
Managing VHDL Models with Makefiles

© 1997 Qualis Design Corporation 1 of 10 97-09-16
Permission to copy or distribute available upon request.

Janick Bergeron
Qualis Design Corporation

janick@qualis.com

ABSTRACT

This methodology brief explains how makefiles and the Unix utility make(1) are
used to efficiently manage VHDL models and deal with the complexities of
compilation dependencies. It also demonstrates how makefiles can easily be
generated and maintained using the productivity tools vmk and lmk.

A MAKEFILE PRIMER

A makefile is a configuration and control file for the UNIX utility make. This
utility has proven to be so powerful and popular that it is available on other
operating systems. Software engineers have long been confronted with the
problem of keeping software systems up-to-date, making sure that all modified
files were properly recompiled and that all required components were available.

Before we tackle makefiles for VHDL, we must become familiar with their original
intended use: maintaining C programs. Figure 1 shows three inter-related C source
files: a header file (utils.h) declaring externally available functions in a
corresponding utility source file (utils.c) and a top-level source file (main.c)
that uses some utility functions.

Figure 1: Example of C source code

char* get_userid(int uid);char* get_userid(int uid);

utils.h:

#include "utils.h"
char* get_userid(int uid)
{
 ...
}

utils.c:

#include "utils.h"
int main(
{
 ...
 name = get_userid();
 ...
}

#include "utils.h"
int main(
{
 ...
 name = get_userid();
 ...
}

main.c:

If a change is made to the file utils.h, both files utils.c and main.c
should also be recompiled to ensure that they all agree on the usage of the
functions declared in the header file. Similarly, if the file utils.c is changed,
only it needs to be recompiled; however, all software systems that use it must also
be rebuilt. In this example, an ANSI compiler would report the fact that the call
get_userid in the file main.c lacks an argument. Since neither the operating
system nor the C language enforce compilation requirements, not recompiling the
file main.c would not prevent building the software system but a run-time failure
would occur. Finding the cause of the problem would require the use of a source-

Managing VHDL Models with Makefiles

© 1997 Qualis Design Corporation 2 of 10 97-09-16
Permission to copy or distribute available upon request.

level debugger and significantly more effort than would have been required had the
compiler found the error.

The brute-force approach to solving this problem would be to compile each and
every file whenever a change is made to any file. This may be acceptable for small
software systems, but it would be prohibitively inefficient in large systems
composed of dozens of large files. A more efficient approach would be to define
dependency rules indicating what needs to be done if a specific file changes. A file
specifying such dependency rules is called a makefile and the make program
performs any necessary steps required to update a specific software system based
on the rules in the makefile.

Makefile rules use the file modification times to determine if a file is out-of-date
with respect to another. If a file is found to be out-of-date, it is updated using one
or more user-specified commands. Figure 2 shows the makefile for the example in
Figure 1 and defines the following rules:

• The object file utils.o must be updated if either of the files utils.c
or utils.h are newer (i.e. have been modified since the last
compilation).

• The object file main.o must be updated if either of the files main.c or
utils.h are newer.

• The binary file doit must be rebuilt if either of the object files main.o
or utils.o are newer

Figure 2: Makefile for the Example C Source Code

makefile:

utils.o: utils.c utils.h
cc -c utils.c

main.o: main.c utils.h
cc -c main.c

doit: main.o utils.o
cc -o doit main.o utils.o

The entire software system doit can now be brought up-to-date using a minimum
number of commands by simply using the following command:

% make doit

COMPILATION DEPENDENCIES

Hardware engineers have traditionally not had to deal with compilation order
problems before: simulators simply took a list of files and compiled them before
each and every simulation run. Syntax errors were quickly identified and fixed
since the simulation could not proceed when they were present. Potential design

Managing VHDL Models with Makefiles

© 1997 Qualis Design Corporation 3 of 10 97-09-16
Permission to copy or distribute available upon request.

mistakes, such as two inputs connected together, wrong number of pins used, or
truncated busses, often went unreported until a problem during simulation was
eventually traced to the mistake. Only then were these mistakes fixed.

Early programming languages, such as BASIC, C, and FORTRAN operated in a
similar fashion. Software engineers realized several years ago that a lot of those
mistakes could be automatically caught at compile time, with their time better
spent looking for and fixing the more serious problems at run time. Thus came the
concept of strong typing used in more modern languages such as ANSI C. Strong
typing had only one problem: to be checked, the source file had to be compiled,
but nothing actually enforced compilation when a file change was made. Software
systems had to rely on manually maintained makefiles.

ADA and VHDL thus took strong typing and conformance checking one step
further: by taking over the management of the object file from the operating
system, the system could ensure that source files were subsequently recompiled
whenever another file they depended on had been recompiled.

Figure 3 shows a small VHDL model example with arrows showing the compile-
time dependencies. If the file block_e.vhd is recompiled, whether or not it has
actually been modified, the files top_a.vhd and block_a.vhd will need to be
recompiled before the simulator will allow a simulation to proceed.

Figure 3: Example VHDL Source Code

block_e.vhd:

entity BLOCK is
 ...
end BLOCK;

entity BLOCK is
 ...
end BLOCK;

block_a.vhd:

architecture RTL of BLOCK is
 ...
begin
 ...
end RTL;

architecture RTL of BLOCK is
 ...
begin
 ...
end RTL;

top_e.vhd:

entity TOP is
 ...
end TOP;

entity TOP is
 ...
end TOP;

top_a.vhd:

architecture BENCH of TOP is
 for all:DUT use
 entity BLOCK(RTL);
begin
 ...
end BENCH;

If a VHDL system produced a visible object file like C compilers do, the makefile
shown in Figure 4 could be used to maintain the model of Figure 3.

Managing VHDL Models with Makefiles

© 1997 Qualis Design Corporation 4 of 10 97-09-16
Permission to copy or distribute available upon request.

Figure 4: Hypothetical Makefile for VHDL Model Example

block_e.o: block_e.vhd
vhdl block_e.vhd

block_a.o: block_a.vhd block_e.o
vhdl block_a.vhd

top_e.o: top_e.vhd
vhdl top_e.vhd

top_a.o: top_a.vhd top_e.o block_e.o
vhdl top_a.vhd

simulation: top_e.o top_a.o block_e.o block_a.o
sim TOP

makefile:

VHDL AND MAKEFILES

Although VHDL systems enforce compilation dependencies before a simulation
can proceed, they provide little help in resolving compilation dependency problems
and fail to automate the maintenance of up-to-date VHDL models. There are two
problems:

• They do not detect that a source file has been modified and therefore needs
to be recompiled. In the example shown in Figure 3, the user must
manually compile the file block_e.vhd after any modifications.

• Some tools can perform required compilations by recompiling an internal
copy of the last source code that was compiled. In the example, upon
request by the user, it would automatically recompile the internal copy of
the source code that was previously compiled from files block_a.vhd
and top_a.vhd. Any modifications made to the actual source files
would not be included.

Makefiles are the obvious solution to the compilation dependency problem. Any
modifications to any source files will trigger the compilations necessary to bring
the model up-to-date.

Some VHDL tools (e.g. Synopsys’s VSS or Model Technology’s V-System)
include a makefile generation utility. Unfortunately, the makefile generation
process requires a compiled model to determine the dependencies. The user must
manually compile any new file then manually update, in the correct order, the
entire model before a new makefile can be generated. This makes using such
makefiles useful only when a model has reached the maintenance stage. It is of
little use while the model is actively being developed. These makefiles are also
tool-specific and cannot be used to port a model to another VHDL system.

Makefiles can be manually maintained by adding source files as they are created.
This process has the advantage that the makefile can be used from the start, even

Managing VHDL Models with Makefiles

© 1997 Qualis Design Corporation 5 of 10 97-09-16
Permission to copy or distribute available upon request.

before all syntax errors have been fixed. It does, however, present several serious
problems:

• VHDL compilers do not generate clearly visible object files like C
compilers do. Instead, compiled code is stored in a library. Since the
implementation, form, and structure of the library is tool-specific, it will be
necessary to reverse-engineer the library structure to determine the
existence, location and name of each object file. This work may have to be
repeated as vendors are free to (and often do) modify their implementation
of the library from release to release.

• Dependencies are between design units, not source files. A source file may
contain more than one unit, each independently compiled as if they were in
different files. There is a one-to-many correspondence between a source
file and the resulting object files. The makefile must thus deal with the
units the file contains, not just the file itself.

• Manual maintenance is tedious, error prone, and inneficient.

Small tool-independent utilities have emerged to help maintain makefiles for
VHDL models: they peruse source files, identify units, deduce dependencies then
generate an appropriate makefile. Most work even in the presence of syntax
errors. Some are targeted to specific VHDL tools, using the information stored in
the library. Others, including Qualis’ vmk, are tool-independent and maintain their
own pseudo object files.

The following sections will illustrate how to maintain a VHDL model using vmk.
The guidelines presented here facilitate the task of managing and maintaining large
VHDL models, and are not vmk-specific. Information on obtaining vmk can be
found at the end of this methodology brief.

USING MAKEFILES

Libraries and VHDL units are analogous to directories and files in an operating
system. Libraries keep units organized in separate name spaces but do not provide
any hierarchy. Since libraries group VHDL units together, it is a good practice to
group the source files for these units in the same directory. Similarly, as libraries
keep their units separate from one another, you should keep source files for units
of different libraries in different directories. Figure 5 shows a typical directory
structure for a large model where the behavioral model, RTL model, testbench,
and reusable components are kept in separate libraries. All the source files
associated with a given library can be found in a single directory, and that directory
only contains source files for that library.

Managing VHDL Models with Makefiles

© 1997 Qualis Design Corporation 6 of 10 97-09-16
Permission to copy or distribute available upon request.

Figure 5: Example VHDL Source Code Structure

project/

test/ asic/

reuse/

test_e.vhd
test1_a.vhd
test2_a.vhd
test3_a.vhd
beh_c.vhd
rtl_c.vhd

beh/ rtl/

asic_e.vhd
asic_a.vhd

top_e.vhd
top_a.vhd
cpuif_e.vhd
cpuif_a.vhd
fifo_e.vhd
fifo_a.vhd

rams/

ram2p_e.vhd
ram2p_a.vhd

vmk generates a makefile for a single library. Since there are 4 libraries, 4
makefiles must be generated. To generate each makefile, one must first change the
working directory to the directory where the compilation will be performed
(typically the same as the source files) then invoke vmk in no particular order:

% cd …/project/test
% vmk -o Makefile *.vhd
% cd ../asic/beh
% vmk -o Makefile *.vhd
% cd ../rtl
% vmk -o Makefile *.vhd
% cd …/reuse/rams
% vmk -o Makefile *.vhd

Any library can be brought up-to-date at any time by invoking make in the source
directory. By default, vmk can only resolve dependencies within the same library
since it only deals with source files from a single library and does not know the
location of the source files for other libraries. Very often, a unit in one library will
depend on a unit in another. If that other library is also maintained using vmk, it is
possible to instruct vmk to infer a cross-library dependency to a unit that resides in
that other library. This can be done through library directives in a vmk
configuration (vmkrc) file mapping library logical names to the directory where
their makefile resides:

library TESTLIB …/project/test
library RTLLIB …/project/asic/rtl
library RAMLIB …/reuse/rams
library BEHLIB …/project/asic/beh

To recompile the entire model, make must be invoked for each library in the
correct order:

% cd …/reuse/rams; make
% cd …/project/asic/beh; make
% cd ../rtl; make
% cd ../../test; make

Managing VHDL Models with Makefiles

© 1997 Qualis Design Corporation 7 of 10 97-09-16
Permission to copy or distribute available upon request.

This process of generating makefiles for individual libraries then invoking make in
each library in the correct order can be cumbersome. That’s why vmk comes with
a companion tool called lmk designed to handle this task. Library directives in
lmk’s configuration files (lmkrc) define the available libraries, their logical name,
the directory where compilation must take place, and how to get all the source files
for that library from that directory. For the above example, the lmkrc file might
look like this:

library TESTLIB …/project/test *.vhd
library RTLLIB …/project/asic/rtl *.vhd
library RAMLIB …/reuse/rams *.vhd
library BEHLIB …/project/asic/beh *.vhd

Refreshing the makefile in all known libraries, then generating a shell script to
invoke make in all the same libraries in the correct order is achieved using the
simple command:

% lmk -l all -u -o recompile

Bringing up-to-date a model made up of an arbitrary number of files in an arbitrary
number of libraries is now reduced to invoking the shell script:

% ./recompile

MINIMIZING COMPILATION REQUIREMENTS

The compilation dependencies of VHDL can be frustrating. However, users can
minimize the pain by following a simple principle: keep entities, architectures,
configurations, packages, and packages bodies in separate files. Previous
requirements from the Synopsys synthesis tool and Verilog experience often
entices people to put entities and architectures in the same file, as well as packages
and their bodies. Doing so is no longer good design practice.

Figure 6 shows the same source code as the example shown in Figure 3 but
structured in 2 files instead of 4. Notice that there are still 3 compilation
dependencies: dependencies are between units, not source files, hence some
dependencies can be contained in the same file.

Managing VHDL Models with Makefiles

© 1997 Qualis Design Corporation 8 of 10 97-09-16
Permission to copy or distribute available upon request.

Figure 6: VHDL Source Maximizing Compilation Requirements

entity BLOCK is
 ...
end BLOCK;

architecture RTL of BLOCK is
 ...
begin
 ...
end RTL;

entity BLOCK is
 ...
end BLOCK;

architecture RTL of BLOCK is
 ...
begin
 ...
end RTL;

block.vhd:

entity TOP is
 ...
end TOP;

architecture BENCH of TOP is
 for all:DUT use
 entity BLOCK(RTL);
begin
 ...
end RTL;

entity TOP is
 ...
end TOP;

architecture BENCH of TOP is
 for all:DUT use
 entity BLOCK(RTL);
begin
 ...
end RTL;

top.vhd:

Let’s examine the compilation requirements when the architecture of BLOCK is
modified. If the Figure 6 structure is used, the modification will require the
recompilation of file block.vhd which will cause the entity BLOCK to be
recompiled as well, generating a new object file for it. This will make the
architecture of TOP obsolete and require the file top.vhd to be recompiled,
which will recompile the entity TOP as well. This cascade effect ripples all the
way through the hierarchy of the model.

On the other hand, if the structure shown in Figure 3 is used, the modification to
the architecture of BLOCK requires that the file block_a.vhd be recompiled.
Since no other units depend on that architecture, no other recompilations are
required.

When structuring a model into different libraries, care must be taken to minimize
the number of cross-library dependencies to minimize the effect of a library update
on others. Figure 7(a) shows a model divided between two libraries with cross-
library dependencies. When library LIB1 is refreshed, there is a high probability
that LIB2 will need to be refreshed as well. Figure 7(b) shows the same model
with units rearranged to minimize cross-library dependencies, reducing the
probability that LIB2 will be affected by a refreshing of LIB1.

Figure 7: Alternative Library Structures

XLIB1: Y Z

ALIB2: B C

(a)

A Y Z

X B C

(b)

Furthermore, cycles in cross-library dependencies, as shown in Figure 8, should be
avoided. To compile such models, it is necessary to bounce back and forth
between libraries to achieve a correct order. For example, to compile the model

Managing VHDL Models with Makefiles

© 1997 Qualis Design Corporation 9 of 10 97-09-16
Permission to copy or distribute available upon request.

shown below, a compilation order with the minimum library switch would be
LIB1.Z, LIB1.X, LIB2.C, LIB2.B, LIB2.A, then LIB1.Y. Without cycles,
libraries can be completely compiled one at a time. lmk does not handle cycles in
cross-library dependencies.

Figure 8: Cycles in Cross-Library Dependencies

XLIB1: Y Z

ALIB2: B C

OBTAINING A COPY OF VMK

You can access vmk from the Qualis technology library at:

http://www.qualis.com

Alternatively, you can download vmk via anonymous FTP from:

ftp://ftp.qualis.com/pub/vhdl/vmk

VMK is currently available for Sun/Sparc, HP-700.and Windows-NT.

To obtain a free evaluation license, send email to vmk@qualis.com. Please
provide the hostid of a machine to be used as a network license server.

SUMMARY

Makefiles specify compilation dependency rules and help automate the
maintenance of large software systems. They can facilitate the maintenance of
VHDL models and remove the user from compilation order and dependency
details. vmk, and its companion tool lmk, can be used to automatically maintain
makefiles for VHDL models made up from an arbitrary number of files containing
any number of library units, scattered across several libraries. Keeping library units
in separate files also greatly reduces the compilation requirements when a library
unit is modified.

ABOUT THE AUTHOR

Janick Bergeron is the Director of Technology at Qualis Design where he helps
shape the industry’s most advanced verification, modeling and implementation
methodologies. He actively consults with leading-edge engineering teams on
design methodologies, and has created and taught several introductory and
advanced classes on HDL-based design. Janick frequently contributes his
experience to the hardware design community through conference papers,
tutorials, panel discussions, and newsgroup articles. He can be reached via email
at janick@qualis.com or by phone at (503) 644-9700.

Managing VHDL Models with Makefiles

© 1997 Qualis Design Corporation 10 of 10 97-09-16
Permission to copy or distribute available upon request.

Qualis applies its knowledge, expertise and fresh perspective to the world's
toughest system design challenges. With extensive million+ gate ASIC and system
design experience, the minds at Qualis routinely help technology leaders get to the
future, faster. Qualis also shares its knowledge through unique courses in HDL-
based design.

Learn more about Qualis at http://www.qualis.com.

