Panel on System Level Design and VHDL

Peter Ashenden
The University of Adelaide

currently Visiting Scholar at
The University of Cincinnati

partially supported by Wright Laboratory
under USAF contract F33615-95-C-1638

VHDL in the design flow

• At the system level, specify aspects of the system
 – structure (architectural partitioning)
 – behaviour (data transforms, reactions)
 – . . .

• VHDL allows description of structure and behaviour

• Prefer single language approach
 – system level to detailed design (hardware/software)
 – aids refinement
 – avoid semantic mismatch
Problem with VHDL

- Behaviour includes concurrency and communication
- Communication performed using signals
 - assignment, resolution, waits
- Signals do not express synchronization
 - cf. system description and programming languages
 - assignment schedules a message for a particular time
 - receiver may miss the message
 - if it does not respond at that time

Ad hoc solutions

- Communication using handshaking protocol
 - requires extra signals
 - requires protocol implementation
- Explicitly instantiated message queues
 - extra components
- Both detract from abstraction of communication
 - introduction of extraneous artefacts
cf. other description languages

for describing behaviour, eg:
- StateCharts
- Estelle
- SDL
- CSP
- ...

Concurrent processes with message passing

Comparison with VHDL

- Concurrent process model with message passing
 \[\equiv\] concurrent FSMs communicating by events
- VHDL
 - statically specified processes & channels (signals)
 - asynchronous unbuffered message passing (?!)
- Alternatives
 - static vs. dynamic process instantiation
 - static vs. dynamic channel creation
 - sync vs. async message passing
Language design issues

- Message passing mechanism and semantics
- Communication abstraction in entity interface
- Dynamic process creation/termination semantics
 - Process abstraction and interface
- Integration with existing language
- Integration with other extension (eg, SUAVE)

Result
- Improved support for system modeling in VHDL
- Single-language hardware/software design flow