1.1 The system equations

Analog simulator starts an analysis by writing a set of nodal equations which describe the components of the circuit. According to KCL -Kirchoff Current Low the nodal equations for a circuit may be built by summing the currents leaving each of the circuit nodes. Let us take as example the following circuit:
 
 
 

-2 A + (V1 - V2)/10 Ohms = 0 - notation for V1 node

(V2 - V1)/10 Ohms + V2/5 Ohms + (V2 - V3)/10 Ohms = 0 - notation for V2 node

(V3 - V2)/10 Ohms + V3/5 Ohms = 0 - notation for V3 node

After a simple algebraic transformation we obtain:


 1.0* V1 - 1.0*V2          = 20
-1.0* V1 + 4.0*V2 + 1.0*V3 = 0
         -1.0* V2 + 3.0*V3 = 15 
These three equations have three unknown voltages (V1,V2, V3). We will rewrite them in the form of a matrix and we will apply Gaussian elimination to solve them.


 1.0*V1 - 1.0*V2 + 0.0*V3 = 20
-1.0*V1 + 4.0*V2 + 1.0*V3 = 0
 0.0*V1 - 1.0*V2 + 3.0*V3 = 15  
Matrix form:

 1.0 - 1.0 + 0.0      V1    20
-1.0 + 4.0 + 1.0  *   V2   = 0
 0.0 - 1.0 + 3.0      V3    15  
Applying forward elimination we obtain:

1.0 - 1.0 + 0.0   V1   20
0.0 + 3.0 + 1.0 * V2 = 20
0.0 + 0.0 + 10.0  V3   65  
The value of V3 is 6.5 volts; the voltages V2 and V1 may be determined by applying back-substitution resulting in:

V2 = (20 - 6.5) / 3.0 = 13.5/3.0 = 4.5 volts

V1 = (20 + 4.5) /1.0 =24.5 volts