
1

BR 6/00 1

Simple Pipelined System

• All Spice problems in this homework are to be done for
technologies
– tsmc018.model, Vdd = 2.5 V, default temp
– all input waveforms should have rise/fall times of 200 ps.

• It is encouraged that you work in teams of two (if you
work alone, you must provide me with a reason).

• Will be worth twice that of previous assignments.

BR 6/00 2

D
FFinstr

4

D
FFraddr_a

5

D
FF

5
raddr_b

Decode

Regfile D
FF

D
FF

ALU D
FF

D
FFimmop

4 D
FF

5

5

4 D
FF

4

4

4

4

??

D
FFwaddr

5 D
FF

D
FF

5 5

A_addr

b_addr

w_data waddr

Decode stage Exe stage

4-bit
datapath

result

4

BR 6/00 3

Goal

• Implement a simple pipelined system using static CMOS
• Goal is performance
• Problems you will face

– Clock network will have a significant load
– Must generate a gate level netlist from an RTL description
– Must choose your own cells for this for this implementation.

BR 6/00 4

Design Constraints
• Create your own Verilog, Spice level gate library for this

design
– Any complex gate design is valid
– For spice level netlists, use the P_def and N_def transistor subcells

used in previous labs
– Other than inverters, no transistor can exceed a width of 8*wmin.

For inverters, cannot use anything transistor larger than 32*wmin.
– No layout – just spice level netlists
– Can use any DFF design that you can find
– Might want to consider integrating logic with latches to increase

speed
• The register file will be simulated using a Verilog-A model

in the spice level netlist.

BR 6/00 5

Design Constraints (cont.)

• You are free to design the ALU anyway you want to meet
the required functionality
– You cannot move any logic from the EXE stage back into the

Decode stage other than doing pre-decoding on the instruction

• You must provide a Verilog gate level netlist that
implements the RTL
– Must be compatible with the current Verilog testbench

• I will provide a Spectre testbench at a later date
– All inputs, including the clock, will driven by 1X buffers
– All extra drive will have to provided by your spice netlist

implementation

BR 6/00 6

Supported Instructions

• Three operand format
– op rdest, ra, rb rdest = ra op rb

• Arithmetic: add, sub
• Logic: xor, and, or
• Other: slt, sltu
• Set-Less-Than (slt rdest, ra, rb)

– Rdest = 1 if ra < rb (signed comparison)

• Set-Less-Than-Unsigned (sltu rdest, ra,rb)
– Rdest = 1 if ra < rb (unsigned comparison)

2

BR 6/00 7

One Possible ALU Structure

Add, Sub, And,
OR, XOR4

4

4
Set

Logic
Vflag 4

binvert aluop

aluop: Add, Sub, And, Or, Xor

setop: Slt, Sltu, or pass through if not a Set instruction

Cout

Cin

3
setop

2

BR 6/00 8

Add/Sub/And/Or Cell

Cout

Operations: AND, OR, ADD, SUB

If SUB, then Carryin LSB = 1, Binvert = 1.

Diagram from
Computer
Architecture
textbook. Need to
add XOR.

BR 6/00 9

Overflow Flag Logic

Overflow logic depends on whether doing an addition or subtraction:
if (addition) overflow = (Amsb and Bmsb and (not Smsb)) or

((not Amsb) and (not Bmsb) and Smsb)

i.e. For addition, if sign bits of operands are the same, but the result
sign bit is different, then OVERFLOW has occurred. Smsb is the
most significant bit of the result.

If (subtraction) OF = (Amsb and (not Bmsb) and (not Smsb)) or
((not Amsb) and Bmsb and Smsb)

Note: In all cases, Binvert = 1 for subtraction, Binvert = 0 for add

BR 6/00 10

Set Logic
SLT, SLTU : output is non-zero if A < B; ALU always does a SUB

operation, SET logic will output a zero or non zero value based on
flags.

if SLT (signed comparison) then
Let Nf = sign bit of result, OF = overflag
Result (LSB) = ((not OF) and Nf) or (OF and (not Nf))
Result other bits = 0.

If SLTU (unsigned comparison) then
Result (LSB) = not(CarryFlag)
Result other bits = 0.

Note that a Set operation always produces as a result either ‘1’
(‘0001’) or ‘0’ (‘0000’).

BR 6/00 11

Verilog RTL, Testbench

• In distribution, the directory ./modelsim/src/alu_rtl
contains the verilog files
– alu.v - RTL for pipelined system
– tb_alu.v - testbench for alu.v

• To place modelsim on path do ‘swsetup modelsim’
• To compile files do

– cd ./modelsim/src/alu_rtl
– gmake –f alu_rtl/Makefile

• To run simulation:
– qhsim –lib alu_rtl tb_alu –c –do “run 20 us;quit”

BR 6/00 12

Verilog Testbench

• The Verilog testbench file (tb_alu.v) reads a file called
‘prog.obj’ that contains the object code for the program to
be executed.

• A perl script (assemble.pl) is used to assemble a program.
– assemble.pl add_prog.asm will produce an object file called

add_prog.obj
– You should either link or copy your object file to ‘prog.obj’.

• The perl script is ./modelsim/src/assemble.pl
• Testbench provides inputs on rising clock edge.

3

BR 6/00 13

A Sample Program

comment line
add r1,r0,1 # r1 = 1
add r2,r0,2 # r2 = 2
add r3,r1,r2 # r3 = 3, activate bypass B
add r3,r3,r1 # r3 = 3+1 = 4, activate bypass A
sub r4,r3,r3 # r4 = 0
add r7,r3,-7 # r7 = 4-7 = -3 (0x13)

dest srcA, must be a register

srcB, can be register or 4-bit
signed immediate

Registers: r0-r31, r0 is always ‘0’.

BR 6/00 14

Object Code file produced by ‘assemble.pl’

// add r1,r0,1 # r1 = 1
1_011_00001_00000_00000_0001
// add r2,r0,2 # r2 = 2
1_011_00010_00000_00000_0010
// add r3,r1,r2 # r3 = 3, activate bypass B
0_011_00011_00001_00010_0000
// add r3,r3,r1 # r3 = 3+1 = 4, activate bypass A
0_011_00011_00011_00001_0000
// sub r4,r3,r3 # r4 = 0
0_100_00100_00011_00011_0000
// add r7,r3,-7 # r7 = 4-7 = -3 (0x13)
1_011_00111_00011_00000_1001

Must copy this file to prog.obj to be read by tb_alu.v

BR 6/00 15

Object Code format

// add r7,r3,-7 # r7 = 4-7 = -3 (0x13)
1_011_00111_00011_00000_1001

Ibit= ‘1’ if
srcB was
immediate Instruction

opcode

Dest reg srcA
reg

srcB reg,
0 if
immediate
used.

Immediate
field

BR 6/00 16

module tb_alu;
wire [3:0] result, instr;
wire [4:0] waddr,raddr_a,raddr_b;
wire [3:0] immop;
reg clk;

reg [(1+3+5+5+5+4)-1:0] progmem[0:100];
integer pc,i;

assign {instr[3],instr[2:0],waddr,raddr_a,raddr_b,immop} = progmem[pc];
alu alu0 (result,instr,raddr_a,raddr_b,waddr,immop,clk);
initial begin
clk = 0; pc = 0;
for (i=0;i<100;i=i+1) progmem[i] = 0;
$readmemb("prog.obj",progmem);
/* run clock cycles */
for (i=0;i<100;i=i+1)
begin
#100 clk = 1;
#100 clk = 0;
pc = pc +1;

end
end
endmodule

tb_alu.v

Instantiate
ALU

Declare program
memory array

Read ‘prog.obj’
file.

Run 100 clock cycles

BR 6/00 17

alu.v

• Contains modules for the register file and alu (the ‘alu’
module contains everything except the register file)

• Register file module prints to screen anytime a write to
register other than ‘r0’ occurs.

• Module alu.v contains the RTL for the functionality of the
system
– You could just synthesize this directly to a gate level netlist using a

simple standard cell library, but the resulting logic would not be
that fast

– The block diagram shown earlier corresponds to the RTL
description

BR 6/00 18

Register File (32 x 4)
Register file is two read ports, one write port.
32 locations, 4 bits/location

Regfile

5

5

4

4

A_addr

B_addr

w_data

waddr

A_data

B_data

5

4

Read
ports

clk

Write port

4

BR 6/00 19

Register File in alu.v

module regfile(a_data,b_data,raddr_a,raddr_b,waddr, w_data, wbit,clk);
output [3:0] a_data,b_data;
input [4:0] raddr_a,raddr_b,waddr;
input [3:0] w_data;
input wbit,clk;

integer j;
/* declare register file */
reg [3:0] rf[31:0];

initial rf[0] = 0;

always @(wbit or clk or waddr or w_data)
begin
if (clk & wbit) begin

if (waddr != 0) rf[waddr] = w_data;
end

end

assign # 1 a_data = rf[raddr_a] ;
assign # 1 b_data = rf[raddr_b] ;

endmodule

Do a write when clk=1 and
wbit=1. In alu, the wbit is
always ‘1’, but could change
later.

Two read ports

BR 6/00 20

Module alu in alu.v

module alu (result,instr,raddr_a,raddr_b,waddr,immop,clk);
`define XOR_OP 0
`define OR_OP 1
`define AND_OP 2
`define ADD_OP 3
`define SUB_OP 4
`define SLT_OP 5
`define SLTU_OP 6

output [3:0] result;
input [3:0] instr;
input [4:0] raddr_a,raddr_b,waddr;
input [3:0] immop;
input clk;

Interface to system, cannot
change this!!!

Opcodes: cannot change!

BR 6/00 21

alu.v (cont).

/* decode stage registers*/

always @(posedge clk) id_instr = #1 instr;
always @(posedge clk) id_raddr_a = #1 raddr_a;
always @(posedge clk) id_raddr_b = #1 raddr_b;
always @(posedge clk) id_waddr = #1 waddr;
always @(posedge clk) id_immop = #1 immop;

Statements like this simply represent a set of DFFs
where the input is the right hand side, the output is
the left hand side.

Unit delay

BR 6/00 22

Bypass Paths in Decode Stage

always @(posedge clk)

if (id_raddr_a == exe_waddr) exe_a = #1 exe_result;
else exe_a = #1 rf_a;

always @(posedge clk)
if (id_raddr_b == exe_waddr) exe_b = #1 exe_result;

else exe_b = #1 rf_b;

Muxes in front of DFFs

add r2,r0,2 # r2 = 2

add r3,r1,r2 # r3 = 3, activate bypass B

If destination of previous
instruction is equal to source of
current instruction, use value from
execute stage since it has not been
written to register file yet!!!

BR 6/00 23

alu.v (cont).
/* alu, 1st stage */

always @(exe_instr or exe_b or exe_immop)
begin
if (exe_instr[3]) exe_op_b = exe_immop;

else exe_op_b = exe_b;
end

always @(exe_instr or exe_a or exe_op_b)
begin

case (exe_instr[2:0])
`XOR_OP: exe_result_a = exe_a ^ exe_op_b;
`OR_OP: exe_result_a = exe_a | exe_op_b;
`AND_OP: exe_result_a = exe_a & exe_op_b;
`ADD_OP: exe_result_a = exe_a + exe_op_b;
`SUB_OP: exe_result_a = exe_a + ~exe_op_b +1;
`SLT_OP: exe_result_a = exe_a + ~exe_op_b +1 ;
`SLTU_OP: exe_result_a = exe_a + ~exe_op_b + 1;
default: exe_result_a = exe_a;
endcase

end

Combinational logic blocks.

2/1 mux for
immediate
operand.

ALU comb logic.

Subtraction
via 2’s
complement

BR 6/00 24

Transforming RTL To Gate Level Netlist

• One approach : could write a Synopsys .lib file for your
library and just use synthesis to do transformation
– Use dummy delays since no time to do characterization
– Use simple gates like NANDs, NORs
– Result would work but would be slow

• Another approach: look at required logic at the gate level,
and design complex gates to reduce the register-to-register
delay time since that will define the maximum clock
frequency
– Write Verilog gate level netlist manually (not that hard for a 4-bit

ALU).
– Execute stage will be the limiting stage so optimize this stage
– You CANNOT move logic from the execute to the decode stage.

5

BR 6/00 25

Writing Gate-level Verilog Modules

• The file ./sample_files/libcells.v has some sample module
definitions for common library functions like nands, nors,
xors, etc.

• When writing your gate level modules, do the following:
– Use either UPPER case or LOWER case for all terminal/module

names
– Do NOT use mixed case
– I would suggest using lowercase for everything (more readable).
– Verilog is case sensitive
– Use unit delays for gate level modules

BR 6/00 26

A Sample Gate Level Module: Full Adder

module FA (SUM,CO, A, B, CI);

output SUM;
output CO;
input A;
input B;
input CI;

xor #2 IO (SUM, A, B, CI);
and I1 (N1,A, B);
and I2 (N2,A, CI);
and I3 (N3,CI, B);
or #2 I4 (CO,N1,N2,N3);

endmodule

Port declarations

Verilog primitive gate

Output gate delay – 2 time
units.

Instance name

Pinlist – for primitives,
first pin is output
followed by inputs.

BR 6/00 27

A DFF

module DFF (Q, CLK, D);
output Q;
reg Q;
input D, CLK;

initial begin
Q=0;
end

always @(posedge CLK)
Q= #1 D;

endmodule

Triggered on
positive clock edge

BR 6/00 28

Hierarchical Gate-level Verilog

module XNOR8G (Y,A,B);

output [7:0] Y;
input [7:0] A,B;

XNOR2X1 I0 (Y[0],A[0],B[0]);
XNOR2X1 I1 (Y[1],A[1],B[1]);
XNOR2X1 I2 (Y[2],A[2],B[2]);
XNOR2X1 I3 (Y[3],A[3],B[3]);
XNOR2X1 I4 (Y[4],A[4],B[4]);
XNOR2X1 I5 (Y[5],A[5],B[5]);
XNOR2X1 I6 (Y[6],A[6],B[6]);
XNOR2X1 I7 (Y[7],A[7],B[7]);

endmodule

A module that
instantiates 8 XNOR
gates.

Previously declared module.

BR 6/00 29

Due Dates

• Completed Spice Simulation are due on October 3rd (two
weeks from today).

• Verilog Gate level simulation due on Thursday Sept 26th

(this does not have to be the final gate level netlist, just a
progress check).
– Expect two files: libcells.v that has gate level modules and alu.v

that is gate level netlist and register file module (do not change the
register file module)

BR 6/00 30

Rankings

• I will rank designs by achievable clock frequency
– Spectre testbench will be provided by Thursday, Sept 26th.

• Upper 1/3 of class will get 25 points added to any test
grade.

• Middle 1/3 will get 12 pts added to any test grade.
• Bottom 1/3 will get no extra points.

