
1

BR 6/00 1

Fall ’02 Project

• Fall ’00 project – designed a standard cell library.
• Fall ’01 project – students picked own project, had to

combine custom layout with automated layout, fit within a
TinyChip padframe
– Students were allowed to use Computer Arithmetic project as

VLSI project

• Problems with Fall ’01 project is that the projects were too
ill-defined, or too large to fit within a TinyChip

• This semester will provide a ‘default’ project that students
can do

BR 6/00 2

Requirements for Fall ‘02
• Fall ’02 project requirements

– Must combine custom layout with automated layout, but the custom
layout can be a new standard cell that you add to the library. If new
standard cell, then must be fully installed in library and be place/routed
with Cadence

– Design must have two or more APL (automated placed/routed) standard
cell blocks, with Cadence routing tool used to connect the standard cell
blocks together

– Any memory arrays must be placed in a reasonable manner (do not just
use the standard cell APR to place these cells).

– Padframe must be placed around the design, with signal/power routing
between core and padframe (can be done manually)

– Must use Spectre to simulate design through pads.
– Must have a gate level Verilog simulation of design, and show that

Verilog and Spectre simulations match.
– If create own project, must have a high level VHDL or Verilog model that

specifies what the design does.
– Can be 2-person teams or individual effort

BR 6/00 3

Default Project: FIFO

• FIFO: 256 x 4 synchronous FIFO.
• Interface

– reset – asynchronous reset
– wclk, rclk – write, read clocks
– empty_b, full_b - empty, full flags, low true
– oe - output enable
– din, dout – data in, data out
– wen, ren – write enable, read enable
– test_full - test mode input, used to set FIFO to full state without having

to write all locations.
• If you do not use the default project, you must provide me with a

project specification via a VHDL or Verilog model

BR 6/00 4

VHDL Model

• Zip Archive contains modelsim/src/fifo library
– fifo.vhd, fifo_a.vhd - entity, architecture of fifo
– tb_fifo.vhd - testbench
– fifo_package.vhd – misc support functions
– stim.vhd - stimulus entity for testing
– stim_emptytest.vhd – stimulus architecture for testing empty flags.

Just does a few writes followed by reads to see if empty flag works
– stim_fulltest.vhd - stimulus architecture for testing full conditions.

Writes all locations, checks full flag, sees if contents are read back
during read

– stim_rw.vhd - misc testing, uses the ‘test_full’ input to check full
condition without writing all locations, checks tri-state condition.

BR 6/00 5

VHDL Model (cont)
• To compile

– gmake –f fifo/Makefile
• To run the test cases:

– qhsim –lib fifo cfg_emptytest –c –do “run 30 us;quit”;
– qhsim –lib fifo cfg_fulltest –c –do “run 30 us;quit”;
– qhsim –lib fifo cfg_rw –c –do “run 30 us;quit”;

• Use the waveform viewer to see exact clock cycle
relationship (use the fifo.do command file for waveform
display)
– The current tests all have the read clock and write clock as the

same frequency, I may add more tests later on and/or may change
the test bench.

• The FIFO functionality is FIXED. You can start working
on your implementation.

BR 6/00 6

Example FIFO: Cypress Synchronous FIFO

• I have posted a data sheet for a Cypress Synchronous
FIFO
– The timing for our FIFO matches the Cypress FIFO in most

respects, but for a definitive clock cycle relationship you must look
at the waveforms produced our FIFO VHDL model.

• Use the data sheet as an a general reference on how FIFOs
work
– Our FIFO does not have as much capability as the Cypress FIFO
– Does not support almost full or almost empty programmable

registers.

2

BR 6/00 7

How Do You Use the provided VHDL Model?

• Use it only as a specification for how it works
– Do not attempt to simply synthesize it “as is”.

• I am going to require that you modify the model so that
adders are NOT used to produce the FIFO read/write
addresses
– Currently, the read/write address registers in the FIFO are simply

incremented to get to the next address
– This is a slow and expensive way to produce the next address,

especially for large FIFOs. We don’t care what sequence of
addresses we go through, as long as all addresses are used

– Use an XOR sequence counter to produce the next read/write
addresses. This is much faster and less area expensive than an
incrementer.

BR 6/00 8

XOR Sequence Generator

Shift
Register
(shift
left)

XOR of
particular
bits

N

dout

LSB
in

For a 16 bit register,

LSB = dout(1) xor dout(2) xor dout(4) xor dout(15)

This is actually a Primitive Polynomial.

BR 6/00 9

Primitive Polynomial
• Look on the WWW for a primitive polynomial sequence

that is 8 bits long
– One problem is that it will only generate 255 codes, not 256 . One

code will be left out
– You will have to detect the missing code and supply this in your

sequence generator.

• If initial value starts at zero, then some valid XOR
combinations are (missing code = 255 for all cases)
– Lsb = 1 xor b(1) xor b(2) xor (3) xor (7)
– Lsb = 1 xor b(3) xor b(4) xor (5) xor (7)
– Lsb = 1 xor b(2) xor b(4) xor (6) xor (7)

• Look at psrn_8bit.pl script on web link to see what the
sequence is for the above combinations.

BR 6/00 10

Due Date

• Project will due on Monday, December 2nd

• This is the week after the Thanksgiving holidays.

