ECAD Tool Flows

- These notes are taken from the book: *It's The Methodology, Stupid!* by Pran Kurup, Taher Abbasi, Ricky Bedi, Publisher ByteK Designs, (http://www.bytekinc.com (now a defunct link)
- A *tool flow* describes the method and order (the methodology) in tools are used produce a design
 - Different companies can take the same collection of tools and use a different methodology to produce an IC
 - Typically, companies will add their own in-house tools to the offthe-shelf tools to tailor the tool flow to their particular needs
 - An ECAD group is usually responsible for designing and maintaining the methodology – they are also responsible for training others in the use of this methodology.

BR 6/00

1

Formal Verification

- *Formal Verification* means that mathematical techniques to *prove* that the hardware is correct as it progresses from one abstraction level to another (Behavioral to RTL to Gate-level to Physical), etc.
- Attraction is that circuit does not have to be simulated no need for test vector generation
 - Generation of test vectors, simulation/checking of vectors time consuming
 - Test vectors may not cover all possible cases
- Formal Verification is difficult, very much a research area
- Is currently a 'hot' area for tool development

BR 6/00

11

Formal Verification Categories Equivalence Checking – most widely used, easiest - Use a mathematical approach to compare a reference design to a revised design (do two netlists implement the same boolean function?) - Reference design must be correct Model Checking – a research area - Compare a design implementation against a set of properties (the model) that defines the behavior Properties define the specifications of the design - Incorporates elements of Equivalence checking but goes beyond this Theorem Proving - most advanced Formally prove two designs are correct - Designs must be represented in a 'formal' specification language that incorporates the specifications of the design in additon to the behavior - VHDL/Verilog does not include this though extensions have been proposed. BR 6/00 12

File	Expansion	Description
LEF PLEF	Library Exchange Format Parametric LEF	Format developed by Cadence
DEF	Design Exchange Format	Format developed by Cadence
SPEF	Standard Parasitic Exchange Format	Industry standard format
SDF	Standard Delay Format	Industry standard format giving pin to pin delays
PDEF	Physical Design Exchange Format	Industry standard format for physical cluster and placement information (initiated by Synopsys)
SDF file and inte Synopsy	es can be read by Synops rconnect delays. SDF ca ys. VHDL/Verilog simul	ys – contains both gate delays n also be generated by ators can also use SDF.

.126:2.126)) 1.502:1.502))
.126:2.126)) 1.502:1.502))
.126:2.126)) 1.502:1.502))
.126:2.126)) 1.502:1.502))
1.502:1.502))
onnect Delays
006:.006) (.005:.005:.005)
(.250:.250:.250))
9)(.244:.244:.244))

Example 3-7 PDEF v2.0 File
(CLUSTERFILE
(PDEFVERSION "2.0")
(DESIGN "top")
(DATE "May 6, 1996")
(VENDOR "Synopsys, Inc.")
(PROGRAM "Design Compiler")
(VERSION "v3.5") Cluster Definition
(DIVIDER /)
(CLUSTER
(NAME "TOP_CLUSTER")
(X_BOUNDS 0.0 50.0)
(Y_BOUNDS 0.0 50.0)
(CLUSTER
(NAME "Clust1")
(X BOUNDS 0.0 20.0)
(Y BOUNDS 0.0 20.0)
(CELL (NAME U2/U1) (LOC 10.0 10.0))
(CELL (NAME U2/U2) (LOC 5.0 7.0))
(CELL (NAME U1/U8) (LOC 6.3 7.0))
) 22

BR 6/00

LEF files can contain the following statements: [VERSION number NAMESCASESENSITIVE statement NOWIREEXTENSIONATPIN statement BUSBITCHARS statement DIVIDERCHAR statement] UNITS statement] PROPERTYDEFINITIONS statement] LAYER (Nonrouting) statement LAYER (Routing) statement }... VIA statement } VIARULE statement VIARULE GENERATE statement }... NONDEFAULTRULE statement] UNIVERSALNOISEMARGIN statement1 EDGERATETHRESHOLD1 statement] EDGERATETHRESHOLD2 statement] EDGERATESCALEFACTOR statement] NOISETABLE table] CORRECTIONTABLE table] SPACING statement] MINFEATURE statement] DIELECTRIC statement] IRDROP statement] SITE statement } ... ARRAY statement]... MACRO macroName Macro data { PIN statement }... OBS statement } TIMING statement] END macroName } ...

LEF files describe physical information for layout libraries - used by external place/route tools

Header contains information for technology (layers, spacing, etc).

Macro statements define each cell (pins and obstructions - timing info needed for timing driven layout)

BR 6/00

25

