
1

BR 6/00 1

Logic Effort Revisited

A better way to measure P, Tau

realistic
waveform
shaping

DUT g3 g4

1x 1x ?x 1x

Fixed, end
load to prevent
Miller effect
on G3

Vary 1x, 2x,
4x, 6x, 8x

Cload ratio is

G3/DUT

1x

Measure delay
from A to B

A B

BR 6/00 2

Plot Delay, Fit to Straight line (delay = mX + b)

No load delay

2

BR 6/00 3

Tau, Pinv

By definition, ginv = 1.0

From fitted line of mx + b, Tau can be calculated at any
point as:

delay = tau (g*h + Pinv)
= tau * g *h + tau * Pinv

When X=0, delay = tau*Pinv = b (y-intercept).

So:

Tau = (delay_measured – b)/Cload

When Tau is known, can compute Pinv

BR 6/00 4

Old vs New

Using Vdd = 2.5, Leda 0.25u

Tau Pinv Pnand2 Pnand4
old 8.4 6.6 11 23
new 9.6 5.7 12 30

Differences mainly due to realistic waveshaping of inputs.

Sizing values in Decoder value not changed much.

3

BR 6/00 5

Measuring Actual Logical Effort

When replace all gates in test circuit with Nand2, and plot:

delay = Mnand2*X + B

versus

delay = Minv*X + B

the ratio of Mnand2/Minv is the logical effort of the Nand2 since
the Cload ratios are the same, and Tau is the same.

BR 6/00 6

Logical Effort of Nand2, Nand4

Nand2 g Nand4 g
Book 1.33 2
Measured 1.6 2.2

4

BR 6/00 7

Derivation of Logical Effort Equations

Logic Gate Model

in

Cin
Rdi

Rui

Cpi Cout

out

Rui : pullup resistance

Rdi : pulldown resistance

Cpi: parasistic cap of gate

BR 6/00 8

Tau

Tau (τ) is the absolute delay of a 1x inverter driving 1x
inverter with no parasitics. We assume equal
pullup/pulldown Rinv, and Cin = Cinv, so:

Tau = κ * Rinv * Cinv

where κ is a constant charateristic of the fabrication
process that relates RC time constants to delay.

Note: Tau is NOT the no-load delay of an inverter. Also,
it is not the delay of a 1x inverter driving a 1x inverter
since this includes the parasitic delay!

5

BR 6/00 9

Template Circuit

A template circuit is chosen as the basis upon which other gates are
scaled. The scaling factor is α .

Ct is the input cap of the template.
Rt is the pullup or pulldown resistance of the template.
Cpt is the parasitic capacitance of the template.

Cin = α * Ct

Ri = Rui = Rdi = Rt / α

Cpi = α * Cpt

BR 6/00 10

RC Delay

Dabs = κ Ri (Cout + Cpi)

= κ (Rt/ α) Cin (Cout/Cin) + κ (Rt/ α) (α Cpt)

= (κ Rt Ct) (Cout/Cin) + κ Rt Cpt

Written in this form, can see relation to logical effort model:
Dabs = τ (gh + p)

τ = κ Rinv Cinv (previous definition)

g = (Rt Ct)/(Rinv Cinv) Note: if template = 1X inverter,
then g = 1 !!!!

h = Cout/ Cin

p = (Rt Cpt)/ (Rinv Cinv) Note: book value of Pinv = 1
only true if Cpt = Cinv!!

6

BR 6/00 11

Logical Effort of Skewed Gates
(unequal rise/fall delays)

2/1 Template gate, g = 1, equal
rise/fall delays

The Leffort definition of a skewed gate is a gate that will
produce the same output current for the critical transistion as
the template gate, and produce less current for the non-critical
transition.

Assume that for a high skew gate, we reduce the non-critical
current by ½ (.5). Then:

2/.5
High skew gate (favors rising transition)
g (rising) = Cin / Cin(template)

= (2 + .5) / (2+1) = 5/6

g (falling) will be ½ of critical, so 5/3

BR 6/00 12

Skewed Gates

2/1 2/2 4/1
Normal Skew

2/.5 2/1 4/.5
High Skew

1/1 1/2 2/1
Low Skew

g = 1 g = 4/3 g = 5/3

g = 5/6 g = 1 g = 3/2

g = 2/3 g = 1 g = 1

Logical efforts shown for critical transitions. Note that
skewed gates always have lower logical efforts for the
critical transition than the corresponding non-skewed
version.

7

BR 6/00 13

Logical Effort of Domino Gates

Dynamic
Gate

Static
Gate

Domino Gate

gd gs

g (domino) = g(dynamic) * g(static)

Both dynamic and static portions enter into the stage
count for sizing purposes (so a minimum 2-stage
circuit)

Probably
high skew

BR 6/00 14

Logical Effort Calculation for Dynamic Gates

Only compute logical effort based on N-tree, size N-tree
relative to Template gate, which is 2/1 inverter

Clk

Clk

2

2

g = 2/3
inverter

Clock capacitance load does not count in logical effort

3

3

3

g = 1
nand2

2 2

2

2

Clk Clk

Clk
Clk

g = 2/3
nor2

8

BR 6/00 15

Domino Logic Effort

φ H

High
Skew

φ H

Domino And2 Domino OR2

g = 1 g = 5/6

g(dom_and2) = 5/6

g = 2/3 g = 5/6

g(dom_or2) = 5/9

Note that logical efforts of dynamic gates less than static
counterparts. This is because of less load on inputs. Also
dynamic gates start switching at Vin= Vt since no P-tree.

BR 6/00 16

A Sizing Problem

Determine Number of Stages to drive a load

Hφ Hφ
Cout = 256 (1x)

Cout = 256 (1x)

Will not worry about inversion/non-inversion of signal

Cin = min size

Cin = min size

9

BR 6/00 17

Dynamic Logic Sizing

Hφ
Cout = 256

Cin = 2/3 * 1x inv

g =2/3 g =5/6

G = 2/3 * 5/6 = 0.56, B = 1, H = 256/ (2/3) = 384
F = 0.56 * 1 * 384 = 215

Fmin = (215)1/2 = 14.6

S1 = g* 256/Fmin = (5/6) * 256/14.6 = 14.6
S2 = g * 14.6/Fmin = (2/3) *(14.6)/(14.6) = 2/3 (consistent)

Delay = 2 (14.6) + P_invH + P_dynamic
= 29.2 + P_invH + P_dynamic

S1

S2

BR 6/00 18

Dynamic Logic Sizing (cont).

Hφ
Cin = 2/3 * 1x inv

g =2/3 g =5/6

Hφ

g =2/3 g =5/6

Cout = 256

H = 256/ (2/3) = 384

G = (2/3 * 5/6) 2 = (0.56)2 = .31

F = 0.31 * 1 * 384 = 119

Fmin = (119)1/4 = 3.3
S1 = g * 256/ 3.3 = (5/6) * 256 / 3.3 = 64.6
S2 = g * 64.6/3.3 = (2/3) * 64.6/3.3 = 13
S3 = g * 13/3.3 = (5/6) * 13/3.3 = 3.3
S4 = g * 3.3/3.3 = (2/3) * 1 = 2/3 (consistent)
Delay = 4 * (3.3) + 2*P_invH + 2*P_dynamic

= 13.3 + 2 *P_invH + 2*P_dynamic

S1S2S3

10

BR 6/00 19

Static Logic Sizing

g =1
Cout = 256

Cin = 1x S1

g =1

G = 1, H = 256, B = 1
Fmin = (256)1/2 = 16

S1 = 256/16 = 16

S2 = 16/16 = 1 (consistent)

BR 6/00 20

Static Logic Sizing (cont)

g =1
Cout = 256

Cin = 1x
S2 S1

g =1

G = 1, H = 256, B = 1
Fmin = (256)1/3 = 6.3

S1 = 256/6.3 = 40.6

S2 = 40.6/6.3 = 6.3

S3 = 6.3/6.3 = 1 (consistent)

11

BR 6/00 21

Static Logic Sizing (cont)

g =1
Cout = 256

Cin = 1x
S2 S1

g =1

G = 1, H = 256, B = 1
Fmin = (256)1/4 = 4

S1 = 256/4 = 64

S2 = 64/4= 16

S3 = 16/4 = 4

S4 = 4/4 = 1 (consistent)

S3

BR 6/00 22

Results

Dynamic Meas (Tplh) Predicted
Two Stage 518.0 392.8
Four Stage 488.0 351.7

Static Meas (Tavg) Predicted
two stage 634.0 416.6
Three Stage 547.0 345.6
Four Stage 562.0 372.5

Leffort correctly predicted relative magnitudes. Leffort does not
capture all of the speedup that will occur in a dynamic
implementation. Dynamic implementation benefits from more
stages than static.

12

BR 6/00 23

Optimium Number of Stages?

• What is the optimum number of stages? (Nopt)

• Depends on the relative magnitude of the parasitic gate
delays to the delay due to the stage effort
– Why? Because as you add more stages, you add a fixed parasitic

delay, and the delay via each stage effort gets smaller. Larger
parasitic delays means Nopt is smaller!

• Authors of logical effort model derive equations that relate
parasitic delay to N optimum
– We will not cover this, since when talking about absolute delay,

also need to account for slope dependence of delay (which Leffort
does not do).

• Practical approach is simply to try a few different N values
(will usually not be that many choices), and see what is
best. Use Leffort to size gates for a particular N

BR 6/00 24

Optimium Number of Stages? (cont).

• Rule of Thumb from Leffort authors which probably is
true:

The optimum stage effort found for an string of inverters
driving a load will be close to the optimum stage effort for
general logic driving a load. (assuming no significant off-path load).

• For our static inverter design, we found that a stage effort
of about 6 is best. So, for a general logic problem, pick
number of stages such that stage effort is about 6 and this
will probably be the best number of stages.

• For static logic, the book recommends 4 as the optimum
stage effort, but they assume Pinv is between 0.7 and 2.5.
Our Pinv is about 6, so higher parasitics means higher
stage effort, which will result in less stages.

13

BR 6/00 25

Optimum Number of Stages? (cont.)

• For our example, the optimum stage effort for static logic
was about 6, for dynamic logic was about 3.5.

• This means that to drive the same load, dynamic logic will
benefit from more stages than static logic

• If the number of stages chosen is non-optimum by +/- 1,
will not significantly affect the delay.

• Other considerations such as Power, Area will definitely
affect the choice of the number of stages.

