<section-header><text><text><text><text>

Vdd = 2.5V	Leda 0.25u	
	Tphl(ps)	Tplh (ps)
3/1 inverter	65.5	56.2
2/1 Inverter	59	59.6
1.4/1 inverter	56	58.5
1.0/1 inverter	55	60.3

Inverter String Delay

		.	D I ()	or 1100 - 011	o ((=)	o
Inverter Skew	Avg Delay(ns)	Stages	Dly/stage	%diff to 2/1	Cap(fF)	%diff to 2/1
Size 3/1	0.717	11	0.07	5.6%	88	27.5%
Size 2/1	0.679	11	0.06	0.0%	69	0.0%
Size 1.4/1	0.669	11	0.06	-1.5%	58	-15.9%
Size 1/1	0.68	11	0.06	0.1%	49	-29.0%

Used 11 stages.

Skew did not make a significant different in terms of delay.

Makes a big difference in terms of power.

Conclusion: Use skewed gates to save power, sacrifice noise margin at one of the rails.

BR 6/00

3

	End to	End Dela	ıy	
Original	In2Out	In2Out		
	Tphl	Tplh	Avg	%diff
Progressive(4,3,2,1)	523	340	431	-4.0%
Fixed(all 2.5)	555	344	449	
Does not appear to ma Recall that we are sizin he interconnect delay!	ke much di ng the trans !!! Measur	fference. istors to ma e delay fro	ake a differ m A to D.	ence in

Intere		lay (A 10 D)
Original	Y2D		Dia
	Tplh	%diff	Improvement
Progressive(4,3,2,1)	88	-39.7%	mprovement.
Fixed(all 2.5)	146		
	Y2D		If interconnect
8X Loads A,B,C	Tplh		delay
Progressive(4,3,2,1)	227	-38.0%	dominates,
Fixed(all 2.5)	366		then .
	Y2D		progressive sizing will
16X Loads at A,B,C	Tplh		make a
Progressive(4,3,2,1)	386	-37.8%	difference.
Fixed(all 2.5)	621		

Sizing	
Path Effort $F = G^{*}H^{*}B = 2 * 64 * 8 = 1024$.	
Min Delay when stage effort = $Fmin = (F)^{1/N}$	
N =3, so Fmin = (1023) $^{1/3}$ = 10.1	
For S3, want Fmin = $b3*g3*h3 = 1 * 1 * 64/Cin$ so Cin(s3) = $64/10.1 = 6.3$	
Cin(s2) = (6.3 * 2 * 1)/10.1 = 1.25	
Check Cin(s1), should be 1.	
Cin(s1) = (1.25 * 1 * 8)/10.1 = 1 BR 6/00	18

	Stg 1	Stg2	Stg3	Total
Predicted	140	278	140	558
Measured	141	325	373	839
Agreemer	nt:	– 8.4, FIIIV – 0.	0, Fliand4 –	23.

