Synopsys

- Will be used to synthesize RTL VHDL/Verilog to Verilog netlists
- 'swsetup synopsys' to place binaries on path
- Online documentation is all PDF /opt/ecad/synopsys/default/doc/online
- doc/online/library -- library compiler documentation
- doc/online/synth synthesis tools compiler
 - doc/online/synth/dcug design compiler user guide
 - $\ doc/online/synth/dctut design \ compiler \ tutorial$
 - doc/online/synth/dcrm design compiler reference manual

BR 6/00

1

dc_shell scripts	
• The most common usage of <i>dc_shell</i> is to give it a scrip file with <i>dc_shell</i> commands:	ot
% dc_shell -f scriptfile	
• The commands on the previous slide could be placed in file called 'makelib.script': read_lib sc_cadence.lib write_lib sc_cadence quit	a
 To compile the library via the script, do: % dc_shell -f makelib.script 	
BR 6/00	4

RTL to Netlist of gates

dc_shell is also used to synthesize an RTL description to a netlist of gates. A sample script file is shown below:

```
link_library=target_library={sc_cadence.db}
read -f vhdl rtl/arbiter.vhd
dont_touch_network clk
compile -ungroup_all
write -f verilog -output gate/arbiter_cadence.v
quit
```

This script reads a VHDL file called 'rtl/arbiter.vhd', synthesizes it to the *sc_cadence* library, and writes the resulting gate-level netlist out as a verilog file.

The 'dont_touch_network clk' statement prevents buffers from being placed on the clock network. No synthesis constraints are specified, so minimum area is used. BR 6/00

5

```
Minimum Delay Constraint
 link_library=target_library={sc_cadence.db}
 read -f vhdl rtl/arbiter.vhd
 dont_touch_network clk
 max_delay 0.1 - from all_registers(-clock_pins) - to all_registers(-data_pins)
 compile -ungroup_all
 write -f verilog -output gate/arbiter_cadence.v
 report_timing -path short -delay max -from all_registers(-clock_pins)
             -to all_registers(-data_pins) -max_paths 3 -nworst 1
 quit
max_delay command used to set timing constratint. Here we
are minimizing the register to register delay.
report_timing command used to report delays along selected
paths.
                                   BR 6/00
                                                                         6
```



```
Inserting IO Pads
For a complete chip design (and not just a standard cell block), I/O
pads have to placed on the 'pins'. This can be done by reading the
gate-level netlist, and using the 'insert_pads' command:
 link library=target library={sc cadence.db}
 read -f verilog gate/arbiter_cadence.v
 set port is pad {clk reset breq bgrant bbusy}
 insert pads
 verilogout_single_bit = true
 write -f verilog -output gate/arbiterTop.v
 quit
 Requires that you have 'pad' cells in your library.
 verilogout_single_bit variable used to write busses out as
 individual signals in top level netlist interface.
                              BR 6/00
                                                              8
```


Adding Timing Data to Cell Definition

Delay timing data is added to the output pin definition of a cell. Values for both output delay and output transistion need to be added. For AND2 example: $pin(0) = \int_{0}^{1} \frac{1}{2} dt$

```
pin(0) {
    direction : output;
    function : "A1 * B1";
    timing() {
     cell rise(t4x3) {
       values("0.740,0.755,0.768",
              "0.803,0.823,0.838",
              "0.918,0.939,0.954,0.967"
              "1.439,1.497,1.554,1.610");
      }
     cell_fall(t4x3) {values(...)};
     rise_transistion(t4x3) {values(....)};
     fall transistion(t4x3) {values(....)};
     related pin: "A1" ;
   timing () { cell_rise.... cell_fall..
                rise transistion... fall transition...
              related_pin: "B1" ;
            }
                    BR 6/00
                                                     19
```


Setup/Hold Timing (con For 1-dimensional table, the axis is different of or hold time. Need seperate templates for set	nt). lepending on setup 1p/hold.
<pre>lu_table_template(setup_1d) { variable_1: constrained_pin_transition index_1 {"0.01 0.1 2.0"}; }</pre>	For setup time, vary transition time on data input, use a fast transition time for clock
<pre>lu_table_template(hold_1d) { variable_1: related_pin_transition ; index_1 {"0.01 0.1 2.0"} ; } BR 6/00</pre>	For hold time, vary transition time on clock input, use a fast transition time for data 22

	Picking Index Values		
•]	Important not to let tool interpolate outside of indexes		
• [Transition index choice		
	 leftmost value could transistion time of fastest cell (largest inverter) with no load 		
	 rightmost value could transition time of weakest output drive cell driving largest expected load (synthesis library file should restrict maximum fanout so that fanout load is bounded). 		
• (Capacitance index choice		
	 leftmost value could be smallest pin capacitance value in library (or 10% to 20% lower than this for margin). 		
	 rightmost value should be largest pin capacitance value in library X maximum allowed fanout (may want to add 10% to 20% for margin). 		
• 1	Number of indexes?		
	- How much SPICE are you willing to do?		
	 Most characterization systems are automated. 		
	BR 6/00 2	6	

Input Pad Specification			
<pre>cell (IPAD_1) { area : 2973.6 ; pad_cell : true; pin (A) { direction : input ; capacitance : 85 ; is_pad : true ; } pin (Y) { direction : output ; function : "A" ; } }</pre>	Indicates that this pin is a pad. Timing data for output pin not shown.		
BR 6/00	28		

