
1

BR 6/00 1

Optimizing Delay
• Optimizing delay can be broken into two categories

– Gate Size selection
– Transistor sizing

• Gate size selection is done in a standard cell design
approach in which you have a library that offers multiple
drive strength cells and pick the cells sizes that give the
highest speed for a design
– Current synthesis tools do a good job

• Transistor sizing is done in a custom design in which you
size individual transistors during the design process to
optimize delay
– quality depends on individual designer
– some synthesis help available
– simulation iteration a tempting option but can be time consuming

BR 6/00 2

Gate Size Selection

• Many algorithms for gate size selection exist
• One iterative approach is known as the Tilos algorithm

Assumptions:
1. Can compute the delay along a path of gates
2. Have multiple gate sizes to choose from

Will yield good results for a path delay

BR 6/00 3

Tilos Algorithm

g1 g2 g3 g4

Step #1: Start with Minimum gate sizes, set current_gate
equal to last gate, driving_gate to current_gate –1.

CL
1x 1x 1x 1x

Step #2a: Increment size of current_gate, compute delay_a

g1 g2 g3 g4
CL

1x 1x 1x 2x

Measure delay, call this last_delay .

BR 6/00 4

Tilos Algorithm (cont.)

Step #2b: Restore current_gate size. Increment size of
driving_gate, compute delay_b

g1 g2 g3 g4
CL

1x 1x 2x 1x

Step #3: Compare delays A, B against last_delay. Whichever
shows the greatest improvement, use this new gate configuration
and set last_delay equal to the new delay.
Repeat Steps #2, #3 until no further delay improvement.

Set current_gate to driving_gate, driving_gate to current_gate-1
and repeat until all gates sized (an exception: the first gate size is
considered a FIXED size as in an input buffer).

BR 6/00 5

Some Observations

To save execution time, do have to compute entire path delay.

Computing changes in delay in a ‘window’ around sized-gate

g1 g2 g3 g4

CL
1x 1x 2x 1x

g4

1x

Compute delay changes here

Also, gate sizes do not have to be exact to get near optimum
delay. If optimum gate size happens to be 2.5x, a choice of
2X or 3X will yield good results. This means that rough
estimation of gate sizes or transistor sizes can often be
satisfactory. BR 6/00 6

Rules of Thumb

• Keep fan-in low to keep #transistors in series low (for sub-
micron, often <= 3).

• Keep fan-out < 5
• Along a critical path, the minimum delay is achieved if

each stage delay is about equal
• Keep rise/fall times about equal

2

BR 6/00 7

Estimating Gate Delay, Transistor sizing

• Would be nice to have a “back of the envelope” method of
sizing gates/transistors that would be easy to use and
would yield reasonable results

• Sutherland/Sproull/Harris book “Logic Effort: Designing
Fast CMOS Circuits” introduces a method called “Logical
Effort”

• Chapter 1 of the book is posted on the Morgan-Kaufman
website (www.mkp.com, search for author names)
– Download this chapter, READ IT!

• We will attempt to apply this method during the semester
to the circuits that we will look at.

• Will look at static CMOS application first (these notes
taken from that chapter).

BR 6/00 8

Gate Delay Model

Delay will always be normalized to dimensionless units to
isolate effects of fabrication process

dabs = d * �

Where � (Tau) is the delay of a minimum sized inverter
driving an identical inverter with no parasitics. Tau is NOT the
no-load delay of an inverter. Also, it is not the delay of a 1x
inverter driving a 1x inverter since this includes the delay
contributions due to parasitics.

Delay of a logic gate is composed of the delay due to parasitic
delay p (no load delay) and the delay due to load (effort delay
or stage effort f)

d = f + p

BR 6/00 9

Logical effort, Electrical Effort

The stage effort f (delay due to load) can be expressed as a
product of two terms:

f = g * h
So delay is

dabs = (f + p) * �
= (g*h + p) * �

g captures properties of the logic gate and is called the logical
effort.
h captures properties of the load and is called the electrical
effort.

BR 6/00 10

RC model versus Logical Effort Model

On the surface, this does not look different from the model
discussed earlier:

Logical Effort:
dabs = (g*h + p) * �

Previous RC model

Gate delay = K * Cload + no-load delay

Where K represented the pullup/pulldown strength of the
PMOS/NMOS tree.

It would help to see how the RC model can be used to derive
the logical effort model.

BR 6/00 11

Derivation of Logical Effort Equations via RC model
Logic Gate Model

in

Cin
Rdi

Rui

Cpi Cout

out

Rui : pullup resistance

Rdi : pulldown resistance

Cpi: parasitic cap of gate
BR 6/00 12

Tau

Tau (�) is the absolute delay of a 1x inverter driving a 1x inverter
with no parasitics. We assume equal pullup/pulldown Rinv,
and Cin = Cinv, so:

Tau = � * Rinv * Cinv

where � is a constant characteristic of the fabrication process that
relates RC time constants to delay.

Note: Tau is NOT the no-load delay of an inverter. Also, it is
not the delay of a 1x inverter driving a 1x inverter since this
includes the parasitic delay! This means that determing Tau
cannot be done via one delay measurement.

3

BR 6/00 13

Template Circuit

A template circuit is chosen as the basis upon which other gates are
scaled. The scaling factor is � .

Ct is the input cap of the template.
Rt is the pullup or pulldown resistance of the template.
Cpt is the parasitic capacitance of the template.

Cin = � * Ct input cap scales up

Ri = Rui = Rdi = Rt / � channel resistance scales down

Cpi = � * Cpt parasitics scale up

BR 6/00 14

RC Delay
Dabs = � Ri (Cout + Cpi)

= � (Rt/ �) Cin (Cout/Cin) + � (Rt/ �) (� Cpt)

= (� Rt Ct) (Cout/Cin) + � Rt Cpt

Written in this form, can see relation to logical effort model:
Dabs = � (gh + p)

� = � Rinv Cinv (previous definition)

g = (Rt Ct)/(Rinv Cinv) Note: if template = 1X inverter,
then g = 1 !!!!

h = Cout/ Cin

p = (Rt Cpt)/ (Rinv Cinv)
Note: book value of Pinv = 1 only true if Cpt (parasitics) = Cinv (Cgate)!!

BR 6/00 15

Logical Effort (g)

In the Sutherland/Sproull model, the logical effort g factor is
normalized to a minimum sized inverter for static CMOS.

So g for an inverter is equal to 1.

Logical effort g of other gates represents how much more input
capacitance a gate must present to produce the same output current
as the inverter (the template gate)

W=2

W=1

g = 1
A

B

B

Y

22

2

2

g = 4/3

g = Cin(nand)/Cin(inv)

A
Y

BR 6/00 16

Logical Effort inverter vs nor2

A

B

B

Y

AW=2

W=1

g = 1

A
Y

1 1

4

4

Intuitive result, Nor2 g is higher than Nand2 g

g = 5/3

BR 6/00 17

Logical Effort inverter vs Complex gate

W=2

W=1

g = 1

A
Y

Intuitive result, worse case g of complex gate higher than
Nand2 or Nor2.

In general, more inputs, more series transistors, the higher the
g value.

A

B C

A

B

C

F

4

4
2

2

22

g(a) = 4/3
g(b,c) = 2

BR 6/00 18

Logical Effort vs. Electrical Effort

• The value for logical effort g depends on what gate is
chosen as the template gate (g=1)
– Choosing a different template gate will alter ‘g’ values for the

other gates in your library
• The g value captures the effects of varying number of

inputs, and transistor topology on more complex gates than
your template gate

• More complex gates will require more logical effort to
produce the same output current as the template gate, and
will also present a higher input load

• The logical effort for a 1x Nand2, 2X Nand2, 4X Nand2
are all the same – the effect of the extra load by the larger
transistors is captured by the electrical effort parameter

4

BR 6/00 19

Logical Effort vs. Electrical Effort

• The electrical effort h parameter is used to capture the
driving capability of the gate via transistor sizing and also
the effect of transistor sizes on loading

• Electrical effort h is defined as
Cout / Cin

where Cout is the load capacitance, Cin is the input
capacitance of the gate.

• Note that h for a gate will reduce as the transistors become
wider since Cin increases (Cout is assume fixed).

BR 6/00 20

The Parasitic Delay p
• Note that the parasitic delay (no-load) p is a constant and

independent of transistor size; as you increase the
transistor sizes the capacitance of the gate/source/drain
areas increase also which keeps no-load delay constant

• To measure P (once P is known, can compute �).

1x 1x

A BA_delay = (g*h + p) * � = (1*1 + p) * �
� = (A_delay)/(1+p)

1x 2x

C DC_delay = (g*h + p) * � = (1*2 + p) * �
C_delay = (2+p) (A_delay)/(1+p)
p = (2*A_delay – C_delay)/ (C_delay-A_delay)

Method #1

BR 6/00 21

Method #2: A Better Way to Measure P, Tau

realistic
waveform
shaping

DUT g3 g4

1x 1x ?x 1x

Fixed, end
load to prevent
Miller effect
on G3

Vary 1x, 2x,
4x, 6x, 8x

Cload ratio is

G3/DUT

1x

Measure delay
from A to B

A B

BR 6/00 22

Plot Delay, Fit to Straight line (delay = mX + b)

No load delay

BR 6/00 23

Tau, Pinv

By definition, ginv = 1.0

From fitted line of mx + b, Tau can be calculated at any
point as:

delay = tau (g*h + Pinv)
= tau * g *h + tau * Pinv

When X=0, delay = tau*Pinv = b (y-intercept).

So:

Tau = (delay_measured – b)/Cload

When Tau is known, can compute Pinv

BR 6/00 24

Method #1 vs Method #2

Using Vdd = 2.5, Leda 0.25u

Tau Pinv Pnand2 Pnand4
method1 8.4 6.6 11 23
method2 9.6 5.7 12 30

Differences mainly due to realistic waveshaping of inputs.

5

BR 6/00 25

Measuring Actual Logical Effort

When replace all gates in test circuit with Nand2, and plot:

delay = Mnand2*X + B

versus

delay = Minv*X + B

the ratio of Mnand2/Minv is the logical effort of the Nand2 since
the Cload ratios are the same, and Tau is the same.

The Sproull textbook has you calculate logic effort (g) but it can
be measured.

BR 6/00 26

Logical Effort of Nand2, Nand4

Nand2 g Nand4 g
Book 1.33 2
Measured 1.6 2.2

BR 6/00 27

Parasitic Delay of Other Gates

• Normalizing the parasitic delay to that of the inverter can
be useful for normalization purposes.

• Some typical values according to Southerland/Sproull:

inverter pinv = 1.0

N-input nand n* pinv

N-input nor n* pinv

Will use these values for example purposes.

BR 6/00 28

Delay Estimation

1x 4x

A B

A_delay = g*h + p = 1*(CinB/CinA) + 1
= 1*(4*CinA/CinA) + 1 = 4 + 1 = 5 time units

1x 4x

A B
A_delay = g*h + p = (4/3)*(CinB/CinA) + 2*1

Cin_B = 4*3 = 12. Cin_A = 4
A_delay = (4/3)*(12/4) + 2 = 4 + 2 = 6 units
Nand2 worse because of higher parasitic delay than inverter.
Note that g*h term was same for both because NAND2 sized to provide same
current drive.

BR 6/00 29

MultiStage Delay
• Recall rule of thumb that said to balance the delay at each

stage along a critical path
• Concepts of logical effort and electrical effort can be

generalized to multistage paths

g1 g2 g3 g4
Path logical effort = g1*g2*g3 *g4

In general, Path logic effort G = � g(i)

Path electrical effort H = Cout / Cinfirst_gate

Must remember that electrical effort only is concerned with
effect of logic network on input drivers and output load.

Cout

BR 6/00 30

Off Path Load

Cout

Off path load will divert electrical effort from the main path, must
account for this. Define a branching effort b as:

b = (Con_path + Coff_path) / Con_path

The branching effort will modify the electrical effort needed at
that stage. The branch effort B of the path is:

B = � b(i)

6

BR 6/00 31

Path Effort F

Path effort F is:

F = path logic effort * path branch effort * path electrical effort
= G * B * H

Path branch effort and path electrical effort is related to the electrical
effort of each stage:

B * H = Cout/Cin * � b(i) = � h(i)

Our goal is choose the transistor sizes that effect each stage effort
h(i) in order to minimize the path delay!!!!!!!!

BR 6/00 32

Minimizing Path Delay

The absolute delay will have the parasitic delays of each stage
summed together.

However, can focus on just Path effort F for minimization purposes
since parasitic delays are constant.

For an N-stage network, the path delay is least when each stage in
the path bears the same stage effort.

f (min) = g(i) * h(i) = F1/N

Minimum achievable path delay

D(min) = N * F1/N + P

Note that if N=1, then d = f + p, the original single gate equation.

BR 6/00 33

Choosing Transistor Sizes

Remember that the stage effort h(i) is related to transistor sizes.

f (min) = g(i) * h(i) = F1/N

So

h(i) min = F1/N / g(i)

To size transistors, start at end of path, and compute:

Cin(i) = gi * Cout (i) / f(min)

Once Cin(i) is know, can distribute this among transistors of that
stage.

BR 6/00 34

An ExampleCin = C

Cout = C

Size the transistors of the nand2 gates for the three stages
shown.

Path logic effort = G = g0 * g1 * g2 = 4/3 * 4/3 * 4/3 = 2.37

Branching effort B = 1.0 (no off-path load)

Electrical effort H = Cout/Cin = C/C = 1.0

Min delay achievable = 3* (G*B*H)1/3 + 3 (2*pinv)
= 3 *(2.37*1*1)1/3 + 3 (2*1.0) = 10.0

Cin = ?? Cin = ??

BR 6/00 35

An example (cont.)

The effort of each stage will be:

f min = (G*B*H) 1/3 = (2.37*1.0*1.0) 1/3 = 1.33 = 4/3

Cin of last gate should equal:

Cin last gate (min) = gi * Cout (i) / f(min)
= 4/3 * C / (4/3) = C

Cin of middle gate should equal:

Cin middle gate = gi * Cin last gate / f(min)
= 4/3 * C/ (4/3) = C

All gates have same input capacitance, distribute it among
transistors.

BR 6/00 36

Transistor Sizes for Example

A

B

B

Y

22

2

2

Where gate capacitance of

2 *W *L Mosfet = C/2

Choose W accordingly.

7

BR 6/00 37

Let Load = 8C, what changes?
Cin = C

Cout = 8C

Size the transistors of the nand2 gates for the three stages
shown.

Path logic effort = G = g0 * g1 * g2 = 4/3 * 4/3 * 4/3 = 2.37

Branching effort B = 1.0 (no off-path load)

Electrical effort H = Cout/Cin = 8C/C = 8.0

Min delay achievable = 3* (G*B*H)1/3 + 3 (2*pinv)
= 3 *(2.37*1*8)1/3 + 3 (2*1.0) = 14.0

Cin = ?? Cin = ??

BR 6/00 38

8C Load Example (cont.)

The effort of each stage will be:

f min = (G*B*H) 1/3 = (2.37*1.0*8) 1/3 = 2.67 = 8/3

Cin of last gate should equal:

Cin last gate (min) = gi * Cout (i) / f(min)
= 4/3 * 8C / (8/3) = 4C

Cin of middle gate should equal:

Cin middle gate = gi * Cin last gate / f(min)
= 4/3 * 4C/ (8/3) = 2C

Note that each stage gets progressively larger, as is typical
with a multi-stage path driving a large load.

BR 6/00 39

Example 1.6 from Chapter 1

4.5C

4.5C

4.5C

B
A

Cin = C

Path logic effort G = g0 * g1 * g2 = 4/3 * 4/3 * 4/3 = 2.37
Branch effort, 1st stage = (y+y)/y = 2.
Branch effort, 2nd stage = (z+z+z)/z = 3
Path Branch effort B = 2 * 3 = 6.
Path electrical effort H = Cout/Cin = 4.5C/C = 4.5
Path stage effort = F = G*B*H = 2.37*6*4.5 = 64.

Min delay = N(F)1/N + P = 3*(64)1/3 + 3(2pinv) = 18.0 units

Size path from
A to B

Cin = y

Cin = z

BR 6/00 40

Example 1.6 from Chapter 1 (cont)

Stage effort of each stage should be:
f(min) = (F)1/N = (GBH)1/N = (64) 1/3 = 4

Determine Cin of last stage:

Cin(z) = g * Cout / f(min) = 4/3 * 4.5C / 4 = 1.5 C

Determine Cin of middle stage:

Cin(y) = g * (3*Cin(z))/ f(min) = 4/3 * (3*1.5C) / 4 = 1.5C

Is first stage correct?

Cin(A) = g * (2*Cin(y))/f(min) = 4/3 *(2*1.5C)/4 = C.

Yes, self-consistent.

BR 6/00 41

Example 1.10 from Chapter 1
Cin = 10u gate cap

Cout = 20u gate cap

Cin y = ??

Cin z = ??
Cin x = ??

Path logic effort G = g0 * g1 * g2 * g3 = 1*5/3 * 4/3 * 1 = 20/9
Path Branch effort B = 1
Path electrical effort H = Cout/Cin = 20/10 = 2
Path stage effort = F = G*B*H = (20/9)*1*2 = 40/9

For Min delay, each stage has effort (F)1/N = (40/9)1/4 = 1.45

z = g * Cout/f(min) = 1*20/1.45 = 14
y = g * Cin(z)/f(min) = 4/3 * 14 / 1.45 = 13
x = g * Cin(y)/f(min) = 5/3 * 13 / 1.45 = 15

BR 6/00 42

Misc Comments

• Note that you never size the first gate. This gate size is
assumed to be fixed (same as in the Tilos algorithm) – if
you were allowed to size this gate you find that the
algorithm would want to make it as large as possible.

• This is an estimation algorithm. The author claims that
sizing a gate by 1.5x too big or two small still results in
path delay within 5% of minimum.

8

BR 6/00 43

Evaluating different Structure options

8C

Cin=C

Cin=C
8C

Cin=C

Option #2

8C

Option #1

The problem

BR 6/00 44

Option #1
Cin=C

Option #1
8C

Path logic effort G = g0 * g1 * g2 = 1*6/3 * 1 = 2
Path Branch effort B = 1
Path electrical effort H = Cout/Cin = 8C/C = 8
Path stage effort = F = G*B*H = 2*1*8 = 16

Min delay: = N* (F)1/N + P
= 3 *(16)1/3 + (pinv + 4*pinv + pinv)
= 3 *(2.5) + 6 = 13.5

BR 6/00 45

Option #2

Option #2

8C

Path logic effort G = g0 * g1 * g2 = 1*4/3 * 5/3 = 20/9
Path Branch effort B = 1
Path electrical effort H = Cout/Cin = 8C/C = 8
Path stage effort = F = G*B*H = 20/9*1*8 = 160/9

Min delay: = N* (F)1/N + P
= 3 *(160/9)1/3 + (pinv + 2*pinv + 2*pinv)
= 3 * 2.6 + 5 = 12.8

Option #2 appears to be better than Option #1, by a slight
margin.

