

Estimating Gate Delay, Transistor sizing

- Would be nice to have a "back of the envelope" method of sizing gates/transistors that would be easy to use and would yield reasonable results
- Sutherland/Sproull/Harris book "Logic Effort: Designing Fast CMOS Circuits" introduces a method called "Logical Effort"
- Chapter 1 of the book is posted on the Morgan-Kaufman website (<u>www.mkp.com</u>, search for author names)
 – Download this chapter, READ IT!
- We will attempt to apply this method during the semester to the circuits that we will look at.
- Will look at static CMOS application first (these notes taken from that chapter).

BR 6/00

Gate Delay Model

Delay will always be normalized to dimensionless units to isolate effects of fabrication process

 $d_{abs} = d * \tau$

Where τ (Tau) is the delay of a minimum sized inverter driving an identical inverter with *no parasitics*. Tau is NOT the no-load delay of an inverter. Also, it is not the delay of a 1x inverter driving a 1x inverter since this includes the delay contributions due to parasitics.

Delay of a logic gate is composed of the delay due to *parasitic* delay p (no load delay) and the delay due to load (*effort delay* or *stage effort f*)

BR 6/00

8

10

d = f + p

RC model versus Logical Effort ModelOn the surface, this does not look different from the modeldiscussed earlier:Logical Effort: $d_{abs} = (g*h + p) * \tau$ Previous RC modelGate delay = K * Cload + no-load delayWhere K represented the pullup/pulldown strength of the
PMOS/NMOS tree.It would help to see how the RC model can be used to derive
the logical effort model.

Tau	
Tau (τ) is the absolute delay of a 1x inverter driving a 1x with no parasitics. We assume equal pullup/pulldown R and Cin = Cinv, so:	nverter inv,
$Tau = \kappa * Rinv * Cinv$	
where κ is a constant characteristic of the fabrication proceed relates RC time constants to delay.	ess that
Note: Tau is NOT the no-load delay of an inverter. Also, not the delay of a 1x inverter driving a 1x inverter since th includes the parasitic delay! This means that determing Ta cannot be done via one delay measurement.	it is is 1u
BR 6/00	12

Logical effort, Electrical Effort

The *stage effort f* (delay due to load) can be expressed as a product of two terms:

f = g * hSo delay is

$$d_{abs} = (f + p) * \tau$$

= $(g*h + p) * \tau$

g captures properties of the logic gate and is called the *logical* effort.

h captures properties of the load and is called the *electrical effort*.

BR 6/00

9

Tau, Pinv	
By definition, $ginv = 1.0$	
From fitted line of $mx + b$, Tau can be calc point as:	culated at any
delay = tau (g*h + Pinv) = tau * g *h + tau * Pinv	
When $X=0$, delay = tau*Pinv = b (y-interce	ept).
So:	
$Tau = (delay_measured - b)/Cload$	
When Tau is known, can compute Pinv	
BR 6/00	23

	Tau	Pinv	Pnand2	Pnand4
method1	8.4	6.6	11	23
method2	9.6	5.7	12	30
method2	9.6	5.7	12	30

	Nand2 g	Nand4 g]
Book	1.33	2	1
Measured	1.6	2.2	1

Path Effort FMinimizing Path DelayPath effort F is:
$$F = path logic effort * path branch effort * path electrical effort $= G * B * H$ The absolute delay will have the parasitic delays of each stage
summed together.
However, can focus on just Path effort F for minimization purposes
since parasitic delays are constant.Path branch effort and path electrical effort is related to the electrical
effort of each stage:
 $B * H = Cout/Cin * \Pi b(i) = \Pi h(i)$ For an N-stage network, the path delay is least when each stage in
the path bears the same stage effort.
 $f(min) = g(i) * h(i) = F^{1/N}$ Our goal is choose the transistor sizes that effect each stage effort
 $h(i)$ in order to minimize the path delay!!!!!!!Minimum achievable path delay
 $D(min) = N * F^{1/N} + P$
Note that if N=1, then d = f + p, the original single gate equation.BR 60031BR 60032$$

