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RTL Synthesis
• RTL = Register Transfer Level
• RTL code (Verilog, VHDL, or something else) 

completely specifies 
– all registers
– Logic operations 
– Arithmetic operation

• Synthesis will convert these to meet some 
combination of an area + delay constraint
– Boolean minimization techniques used to improve both 

area and speed 
– Different area, speed constraints will produce different 

gate level netlists, but will be functionally equivalent
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Random Logic vs Arithmetic RTL

• General boolean minimization techniques work 
well for random logic to meet area/speed 
constraints

• Not true for Arithmetic operations (addition, 
multiplication, etc)
– Design space is too large, and resulting netlists are 

usually sub-optimal when compared to structured 
netlists
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An Example 
• What should be synthesized for  ‘y <= a + b’ 

where y, a, b are 32 bit values?
• Many different adder structures to choose from:

– Ripple carry – slow, but area efficient
– Carry select adder  - faster than ripple, but more gates
– Carry Save adder – fastest adder architecture for 

general logic gates, but requires lots of gates

• Need a methodology that the RTL synthesis tool 
can use to choose between various architectures 
for an arithmetic operation based on speed/area 
constraints 
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Technology Mapping
• Technology mapping refers to how an RTL 

synthesis tool maps boolean operations to a set of 
available gates in a chosen technology
– ASIC library (nands, nors, complex gates, DFFs)
– Gate array library (all primitive nands)
– FPGA library (lookup tables + DFFs)

• Part of technology mapping should also include 
determining the best structure for arithmetic 
operations for a given set of constraints
– I.E. for one technology a 10-bit ripple adder might be a 

faster than a 10-bit CLA, while in a different 
technology the opposite is true.
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Example Technology Mapping
• In just about any ASIC technology ( ie standard cell or 

gate array), a 12-bit adder is faster done via a CLA 
structure than a ripple structure

• In the LUT4 (4-input lookup tables) FPGA technology 
from Xilinx and Altera, the opposite is true
– Basic programmable cells can implement a two bit sum and 

has fast carry logic as part of the cell
– The delay through a LUT4+programmable routing is much 

slower than the dedicated carry logic+routing between cells
– This means that ripple chains are more effective than CLA 

structures for higher values of N than other technologies
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The Problem
Y <= A + B;

RTL Synthesis ToolTiming, Area 
Constraints

Technology 
Library

Implementation 
Library (CLA, 
ripple, etc)

Operator parameters 
(operand size, 
pipelining, etc).

Gate level netlist

Gate level netlist generated based upon 
operator parameters, timing/area 
constraints, tech lib, and available 
implementations.
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Synopsys Design Ware

• Design Compiler is the basic RTL synthesis tool 
from Synopsys

• DesignWare components and libraries is the method 
by which a user can define custom implementations 
and technology mappings for arithmetic operations

• The DesignWare Foundation Basic library already 
has architectures that tradeoff area/speed for many 
arithmetic operations
– These architectures (i.e. Ripple vs CLA) are based on 

generic logic gates and use timing information from the 
technology library plus area/time constraints to pick an 
architecture
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adder.vhd Example
library ieee,synopsys;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use synopsys.attributes.all;

entity adder is
generic( N : integer := 4);
port ( a,b: in std_logic_vector(N-1 downto 0);

sum: out std_logic_vector(N-1 downto 0) );
end adder;
architecture a of adder is
signal tmpa,tmpb: unsigned(N-1 downto 0);
signal tmpsum : unsigned(N-1 downto 0);

begin

tmpa <= unsigned(a); -- type conversion
tmpb <= unsigned(b); -- type conversion
tmpsum <= tmpa + tmpb;
sum <= std_logic_vector(tmpsum); -- type conversion
end a;

Std_logic_arith defines 
unsigned,signed types 
needed for arithmetic 
operations on std_logic.

‘+’ operator only 
defined for signed, 
unsigned types.
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Unsigned vs Signed types

• For addition, unsigned and signed addition uses 
the same hardware, so it does not matter which we 
use

• For other operations like multiplication, it makes a 
difference
– Signed means 2’s complement representation
– Different hardware required for signed vs. unsigned 

multiply 
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Synthesizing with Synopsys 
To place Synopsys on your path, do “swsetup synopsys”.

Synopsys synthesis is best used by giving it a command script 
that has the synthesis commands.

The directory structure that we will use is:
vhdl_course/synopsys/dware_tut/               

/rtl
/gate
/behv      

Script, library 
file locations

RTL files
Synthesized gate 
level  files

High level 
synthesis files

To run a dc_shell script do:

%  dc_shell –f  scriptfilename
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A Sample Synopsys Script
link_library = {gcmos_unit.db}
target_library = {gcmos_unit.db}
analyze -f vhdl rtl/addN.vhd
elaborate addN -parameters "N=>8“
set_max_delay 10 -to {sum}
compile -ungroup_all -map_effort high

report_timing -path full -delay max -to {sum} -max_paths
3 -nworst 1 > add8_dly10.rpt

report_area >> add8_dly10.rpt

change_names -rule vhdl

write -f vhdl -output gate/add8_dly10.vhd

quit

Specify target library

Analyze design (create 
internal representation)

Generate design 
instance

Set delay constraint

Do synthesis

Report timing, area

Write gate level file in VHDL format
BR 6/01 12

Operator Inference
• The previous Synopsys script and adder.vhd file uses 

inference for choosing an operator architecture
– Inference means that the operator architecture is chosen 

based on constraints + technology library

• A delay constraint of 10 is specified from input to 
output via set_max_delay command
– This delay has to match the units specified in the target 

library
– The gcmos.db library is a generic gate library with only a 

few gate primitives 
– Has unit delays (delay = 1), unit areas (area = 1) for all 

delays, areas
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Dware Cache
• When Design compiler builds a Design Ware 

component of a particular type, architecture and 
size (I.e, adder, ripple, 8 bits) this is cached so that 
next time will be faster
– Caches both structure and timing information 
– Cache resides under ~/synopsys_cache_* (exact 

directory name is version dependent.
• Choosing a particular architecture means that DC 

has to build architectures of different types to meet 
the word size, then evaluate each against area/time 
constraints
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Controlling the Architecture Choice
• Can directly control which architecture is used for a 

particular operator by using a Synopsys pragma to 
specify the architecture 
– a pragma is a control directive embedded in a comment

• This can be useful if a particular implementation is 
required as a starting point for optimization
– NOTE: the chosen architecture is used a starting point – it 

will still be modified according to synthesis options
– I.e., you start with a Ripple adder, and are synthesizing for 

speed, synthesis transformations will  modify it beyond 
recognition and will probably not be as good as one that 
started from a CLA structure

BR 6/01 15

architecture a of adder is
begin
process(a,b)
variable tmpa,tmpb: unsigned(N-1 downto 0);
variable tmpsum : unsigned(N-1 downto 0);
constant r0 : resource := 0;
attribute map_to_module of r0: constant is "DW01_add";
attribute implementation of r0: constant is "rpl";
attribute ops of r0: constant is "a1";
begin
tmpa := unsigned(a); -- type conversion
tmpb := unsigned(b); -- type conversion
tmpsum := tmpa + tmpb; -- pragma label a1
sum <= std_logic_vector(tmpsum); -- type conversion
end process;

end a;

Manual Architecture Selection
DW component 
name

DW architecture 
name

Pragma label must be on line where 
synthetic operator occurs
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Reporting Available Architectures

How does one know the available operators/architectures in a 
design ware library?

% dc_shell

dc_shell>  report_design_lib DW01

Will list all synthetic operators for a particular library.  
DW01 is the library that contains the basic operators for 
addition, subtraction, add/sub, inc/dec, multiplication, 
comparators, shifts
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Component Instantiation
library ieee,synopsys,DW01;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use synopsys.attributes.all;
use DW01.DW01_components.all;
-- instantiate DW01 component directly
entity adder is
generic( N : integer := 16 );
port ( a,b: in std_logic_vector(N-1 downto 0);

sum: out std_logic_vector(N-1 downto 0) );
end adder;
architecture a of adder is
attribute implementation:STRING;
attribute implementation of U1: label is “cla”;
signal l0: std_logic;
begin

l0 <= '0';
U1: DW01_add generic map (width => N)

port map (CI =>l0, A =>a, B=>b, SUM => sum,
CO => open);

end a;

Can also instantiate a 
component directly 
instead of using operator 
inference. 

Gives user access to ports not available 
via synthetic operator (e.g.,  Ci)

Optional blue lines allow 
manual architecture selection.
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Creating a Custom DW library

• Suppliers of implementation technologies (ie, 
ASIC libraries, PLDs,  FPGAs, etc) will also 
supply a Design Ware library with custom 
architectures for the basic operators

• This library will take advantage of the unique 
features of the implementation technology to 
create a better mapping than what can be done 
using the basic Design Ware mappings
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Tutorial on Creating Dware libraries
• The synopsys software resides at 

/opt/ecad/synopsy/default (call this $synopsys)
• $synopsys/doc/online/dw/dwdg/dwdg_2.pdf 

contains a tutorial on creating a custom Dware 
library

• Creates an adder that has an ov output (overflow 
output) and has two architectures – ripple (“rpl”) 
and (“cla”). 
– I will not attempt to repeat this entire tutorial here, just hit

the highpoints
– You will need to read this tutorial in order to complete 

the next assignment
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DWSL_addov.vhd

• The tutorial creates a new Dware library called 
DWSL and a component called DWSL_addov

library IEEE;
use IEEE.std_logic_1164.all;
entity DWSL_addov is
generic(width : POSITIVE);
port(A,B : std_logic_vector(width-1 downto 0);

CI : std_logic;
SUM : out std_logic_vector(width-1 downto 0);
OV, CO : out std_logic);

end DWSL_addov;

The ov output is not a true overflow but simply the carry into 
the MSB (the xor of ov, co external to model will produce a 
true overflow)
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DWSL_addov_rpl.vhd
Library IEEE, gcmos;
use IEEE.std_logic_1164.all;
use gcmos.gcmos_components.all;

architecture rpl of DWSL_addov is

signal carry : std_logic_vector(width downto 0);
begin

carry(0) <= CI;
L1: for I in 0 to width-1 generate

U1: fa port map(A(i), B(i), carry(i), SUM(i),
carry(i+1));

end generate;
OV <= carry(width-1);
CO <= carry(width);

end;

This has been modified from 
the original tutorial file to 
use the gcmos library.

A full adder cell which 
produces sum, carry-out 
from a, b, and carry-in

The ripple architecture (“rpl”)
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DWSL_addov_cla.vhd

• This file is too complex to show on slide but 
implements a CLA for N < 17.
– You should look at it to get a feel for how GENERATE 

statements can be use to create a complex architecture
• For complex architectures, not possible or difficult 

to work for any value of N
– “rpl” works for any value of N, but for “cla” the width 

must be less than 17
• For the next assignment, create an architecture for 

a carry select adder (see next page)
– Call this architecture “csel” and has to work for N < 33.
– Name file DWSL_addov_csel.vhd
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Carry-Select Adder

4bit Ripple Adder4bit Ripple Adder

4bit Ripple Adder

The Carry path is the slowest path in the ripple carry adder.  
We can speed it up with the following scheme  (8-bit adder):

A[3:0] B[3:0]

Cin‘0’

A[7:4] B[7:4]

Sum[3:0]

A[7:4] B[7:4]

‘1’

1 0

Sum[7:4]

Cout

Note that Cout of 1st 4-bit 
stage selects the correct 
sum of next stage.  Upper 
stage requires two 4bit 
adders

2/1 mux
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Carry-Select Adder (larger N)

Rpl

A[3:0]B[3:0]

Cin

Sum[3:0]

1 0

Sum[8:4]

Co
‘0’

A[8:4] B[8:4]

Rpl

‘1’
A[8:4]B[8:4]

Rpl

0 1

1 0

‘0’

A[15:9] B[15:9]

Rpl

‘1’
Rpl

5 bit rpl
4 bit rpl

7 bit rpl

A[15:9] B[15:9]

Sum[15:9]
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Carry Select comments
• Critical path is still the carry
• The goal is to match the delay along the carry path to 

the final select on the sum mux to delay of the rpl
adder
– Can increase the ripple size at each stage because the carry 

delay to the mux select gets longer
– Exact choice of sizes for each stage depends on gate delays

• In your implementation, choose your own stage sizes
– CANNOT make them all them size – you must choose 

some scheme for gradual increase
– You know that N will be a maximum of 32, so just pick 

some progression of sizes (like 4-5-7-7-9 or 4-5-7-8-8 or 
whatever).  
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Archive dware.zip
Unpacks a directory dware_tut.students .  Important files:

• gcmos.lib, gcmos.db   GCMOS library

• DWSL_addov.vhd, DWSL_addov_cla.vhd, DWSL_addov_rpl.vhd, 
DWSL_addov_csel.vhd - you  must modify the ‘csel’ architecture.

• analyze_dwsl.script - pass this script to dc_shell to compile all of 
the DWSL*.vhd files.  Must execute this after any changes to 
DWSL*.vhd files

• rtl/{adder_cla.vhd, adder_rpl.vhd, adder_csel.vhd} -- VHDL 
files that have manual component instantiations for addov the three 
respective architectures.
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Archive dware.zip
• adder_sample.script - a sample dc_shell script for synthesizing 

one of the ‘rtl/adder*.vhd’ designs for a particular bit width.   
Modify this script or use the Perl script below.  The synthesized 
design is written to the ‘gate/’ directory.

• make_design.pl – a perl script to assist in generating designs for 
different architectures, N values instead of writing a separate 
dc_shell script for each case. A sample run is:

make_design.pl adder.template %arch%=rpl %dly%=0 %N%=16  

will substitute the values shown for the corresponding strings in the 
adder.template file to create a new dc_shell script. 

If you don’t feel comfortable using this script, simply write your 
own dc_shell script for each case you want to test.
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Archive dw_test.zip
• Contains gcmos/ directory that has VHDL 

entity/architecture,  component package for the 
gcmos cell library
– Install as a modelsim library
– Makefile is  gcmos/Makefile.gcmos
– Look at these files for any questions on cell names, pin 

names, cell functionality.

• Contains dw_test.student directory that should be 
used for testing your synthesized
– Rename to dw_test and install as modelsim library
– Makefile.dw_test is included in this directory
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Testbench in dw_test
• Files tb16.vhd, tb28.vhd are two testbenches for 

testing 16-bit and 28-bit adder implementations
– Generates 100 pairs of random numbers, does sum 

using addov component, prints result
– Configurations are included in each testbench file for 

the three gate level architectures
• After generating a gate level implementation (ie., 

dware_tut/gate/adder16_rpl.vhd ) 
– Copy to dw_test directory, edit file to remove the entity 

declaration for adder
– Make sure the architecture name, file name for gate 

level architecture matches was is expected by the 
configurations in the testbench files, and also the 
makefile.
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Approach
• Read through the DW tutorial referenced 

previously
– You do not have to make any modifications to the files 

as mentioned in the tutorial, I have already made the 
changes and converted them to use the GCMOS library

• Try generating a couple of different sized adders 
for “rpl”, “cla” architectures

• Make sure you can simulate these using the dw_test
library (you might even want to write a testbench 
for a different sized adder like N=20 to ensure that 
you understand the files). 
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Approach (cont.)
• Look at the code in DWSL_addov_rpl.vhd, 

DWSL_addov_cla.vhd to understand the GENERATE approach 
for creating the adder structure
– Look at the PLD model we covered for more examples of GENERATE 

statements
• Fill in the architecture of DWSL_addov_csel.vhd to create a 

parameterized carry-select adder
– Should use the fa (full adder), mux2to1 cells primarily
– The full adder (fa) cell function in gcmos.lib is not specified so that 

Synopsys will treat it as a black box – this meant the gate level structure 
will not be modified  via synthesis constraints – easier to debug.

• Generate designs of size N=16, N=28 and test via the dw_test
testbench – your adder should generate the same results as the 
other architectures.
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How to get help in Synopsys
Within dc_shell, can do “man command_name”  to bring up a man 
page on that command.

Extensive PDF documents at $synopsys/doc/online

synth/   directory contains all documents for synthesis tools. 
Synt/dcrm has dc_shell reference manual.
Synth/dcug has dc_shell user guide.  Both of these are good places 
to look for answers to questions about dc_shell.

dw/dwug has user guide for Design Ware (basic concepts, usage 
examples).

dw/dwdg has notes for creating custom libraries including tutorial. 
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Before you ask questions
• Have you looked at all of the files/examples ?

– Have you looked inside the files and attempted to 
understand the particular VHDL or dc_shell commands 
being used?

– Have you looked at the input files required by the script 
and output files produced by it?

• Have you looked at the Synopsys PDF 
documentation?

• Have you used the ‘man’ facility in dc_shell?


