
1

3/26/2002 BR 1

Bilinear Filtering

Recall that the blend equation was:

Cnew = Ca * f + Cb * (1-f)

Where Ca, Cb were two 8-bit colors, and Cnew was a blend of
these two colors using the blend factor ‘f’ (a 9-bit value).

A similar operation is performed when a texture is mapped onto an
object in 3D graphics, except that 2 blend factors and four colors
are used:

Tnew = (1-v)*(1-u)*T00 + (1-v)*u*T01 + v*(1-u)*T10 + u*v*T11

T00,T01, T01, T11 are 8-bit color values as before, with two 9-bit
factors v, u used to determine Tnew .

3/26/2002 BR 2

Bilinear Filtering (cont)

We will use 9-bits to represent u, v as with the blend equation in
order to represent 1.0 accurately.

Sample calculations:

u=1.0, v=1.0, then Tnew = T11

u=0.0, v=1.0, then Tnew = T10

u=1.0, v=0.0, then Tnew = T01

u=0.0, v=0.0, then Tnew = T00

u = 0.5, v=0.5 then

Tnew = 0.25*T00 + 0.25*T01 + 0.25*T10 +0.25*T11

3/26/2002 BR 3

The Problem
• Use Synopsys Behavioral Compiler to create three different

implementations
– Minimum resource implementation (1 adder, 1 multiplier), no-overlapped

computations. New output is produced every ???? clock cycles??
– 2 Multiplier implementation – no overlapped computations. New output

is produced every ????? clock cycles.
– Overlapped computation implementation in which input bus is always

busy and a new output is produced every 4 clock cycles.
• Will use ‘+’,’*’ , oneminus operations from

dwdsp_arith_unsigned and modules from DWDSP.sl synthetic
library.
– Must have completed DWDSP_mult_csa.vhd from previous assignment.

• Only keep 8 most significant bits of each multiplication
operation.

3/26/2002 BR 4

bifilt Entity
entity bifilt is

port (clk,reset: std_logic;
din: in std_logic_vector(8 downto 0);
coeff_rdy: out std_logic;
irdy: out std_logic;
ordy: out std_logic;
dout: out std_logic_vector(7 downto 0));

end bifilt;

din – input bus for u,v, Txx values

coeff_rdy asserted when input u,v after synchronous reset.

irdy asserted when ready for input of successive Txx value – T00,
T01, T01, T11 on successive clock cycles.

ordy asserted when dout has valid output value.

3/26/2002 BR 5

bifilt_behv.vhd architecture – reset states

library ieee,dwdsp;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use dwdsp.dwdsp_arith_unsigned.all;

architecture behv of bifilt is
begin
main:process
variable u, v: std_logic_vector(8 downto 0);
begin
reset_loop: loop
ordy <= '0';
irdy <= '0';
coeff_rdy <= '0';
wait until clk'event and clk = '1';
if (reset = '1') then exit reset_loop; end if;

All handshaking lines negated on
reset.

3/26/2002 BR 6

coeff_rdy <= '1';
wait until clk'event and clk = '1';
if (reset = '1') then exit reset_loop; end if;
coeff_rdy <= '0';
u := din;
wait until clk'event and clk = '1';
if (reset = '1') then exit reset_loop; end if;
v := din;
wait until clk'event and clk = '1';
if (reset = '1') then exit reset_loop; end if;
irdy <= '1';
wait until clk'event and clk = '1';
if (reset = '1') then exit reset_loop; end if;

l1: loop -- sample loop

bifilt_behv.vhd architecture – reset states (cont)

u, v values input on successive clocks
after assertion of coeff_rdy .

2

3/26/2002 BR 7

bifilt_behv.vhd architecture – sample_loop
l1: loop -- sample loop
-- fill this in.

end loop; -- L1
end loop; -- reset_loop;
end process;

Fill in the sample_loop. Must input T00, T01, T10, T11 in
successive super states (you can compute with a Txx value in the
same super state in which you input the value).

For non-pipelined implementation, irdy and ordy must be negated
in the first super state, and asserted in the super state in which the
output is ready.

For pipelined implementation, irdy, ordy are never negated after
its initial assertion in the reset states (new Txx value input every
clock, new Tnew value every 4 clocks)

3/26/2002 BR 8

bifilt_test.zip Archive
This expands to a bifilt_test/ directory that provides a testbench
for your bifilt implementations. Install this a modelsim library.
Files are:

bifilt_behv.vhd -- behavioral model for bifilt implementation,
will be used for Synthesis with Behavioral Compiler.

bifilt_mult1.vhd, bifilt_mult2.vhd, bifilt_pipe.vhd – replace these
with 3 synthesized gate level implementations (1 multiplier, 2
multipliers, pipelined).

tb.vhd – testbench for use with ‘behv’, ‘mult1’, ‘mult2’
implementations (provides configurations for each).

tb_pipe.vhd – testbench for use with ‘pipe’ implementation

bifilt_behv.log – log file that has golden output results – output
files all implementations should match these outputs.

3/26/2002 BR 9

dsp_dware.zip Archive
This archive unpacks to a dsp_dware/ directory (same as previous
assignment). This only contains three files:

behv/bifilt.vhd -- edit the architecture to contain the architecture
you created in bifilt_test/bifilt_behv.vhd. Synthesize the mult1
and mult2 implementations via this file.

bifilt_mult1.script -- a dc_shell script that uses behv/bifilt.vhd to
synthesize a minimum resource implementation using Behavioral
compiler. Create new versions of this script (bifilt_mult2.script,
bifilt_pipe.script) to synthesize two multiplier pipelined
implementations.

behv/bifilt_pipe.vhd -- replace this with the architecture that will
be used for the pipelined implementation – the only difference is
that irdy, ordy are never negated after its initial assertion (new
Txx value input every clock, new Tnew value every 4 clocks)

3/26/2002 BR 10

Procedure

• Complete the bifilt_test/bifilt_behv.vhd architecture and simulate
in modelsim using the cfg_behv configuration provided in
bifilt_test/tb.vhd
– The results must match the bifilt_test/bifilt_behv.log results

• Place the architecture from bifilt_test/bifilt_behv.vhd into the
dsp_dware/behv/bifilt.vhd file. Use dc_shell and the
dsp_dware/bifilt_mult1.vhd script to synthesize a gate level
implementation
– Gate level implementation will be placed in the ./gate directory. Copy this

to the bifilt_test directory and simulate using modelsim – verify that the
output results match the bifilt_behv simulation results.

3/26/2002 BR 11

Procedure (cont)

• Create a new version of the bifilt_mult1.script such that a two
multiplier implementation is synthesized
– Call new script bifilt_mult2.script, write the gate level output to

gate/bifilt_mult2.vhd.
– Synthesize using dc_shell; look at the report file and verify that two

multipliers are used
– Copy the gate/bifilt_mult2.vhd file to the bifilt_test directory and simulate

with modelsim – verify the output results match the bifilt_behv results.

3/26/2002 BR 12

Procedure (cont)

• Create a new version of the bifilt_mult1.script such that a
pipelined implementation is synthesized that inputs a new Txx
value every clock with outputs produced every four clocks
– Call the new script bifilt_pipe.script, must read the file

behv/bifilt_pipe.vhd.
– Must create a new file called ‘behv/bifilt_pipe.vhd’ that is only a slight

modification of the original ‘behv/bifilt.vhd’ – irdy is never negated
after its assertion

– Use the configuration named cfg_pipe provided in
bifilt_test/tb_pipe.vhd to verify that the output results match the
bifilt_test/bifilt_behv results.

3

3/26/2002 BR 13

Required Files for Submission

• All files placed in directory called sim7
• ./bifilt_mult2.script - script for synthesizing 2 multiplier

implementation; must read file behv/bifilt.vhd and produce file
gate/bifilt_mult2.vhd

• ./bifilt_pipe.script - script for synthesizing pipelined
implementation; must read file behv/bifilt_pipe.vhd and
produce file gate/bifilt_pipe.vhd

• ./behv/bifilt.vhd - file read by bifilt_mult2.script
• ./behv/bifilt_pipe.vhd - file read by bifilt_pipe.script.

3/26/2002 BR 14

Comments on Testbench (tb.vhd, tb_pipe.vhd)

• Testbench computes 8 Tnew values using 8 sets of Txx values
read from a 32-location memory (8 x 4 = 32).

• 6 different values of u,v used for each set of 8 Tnew values
– V=1.0, u = 0.0
– V=0.0, u = 1.0
– V=0.0, u = 0.0
– V=1.0, u = 1.0
– V = 0.5, u = 0.5
– V = 0.75, u = 0.25

• For the last two cases, might get a different value in the LSB
than my provided golden file depending on the order of the
multiplications (1-v|v * 1-u|u * Txx)
– Difference is due to dropping the least significant 8 bits.

