
1

3/6/2002 BR 1

WARNING – UPDATED SLIDES

• These slides and associated ZIP archives have been
updated since they were first posted.
– Copy your dware dsp_dware/DWDSP_mult_csa.vhd,

dsp_test/blend8_rtl.vhd to another location.
– Remove your old dsp_dware, dsp_test directories, and unzip the

updated archives.

• The slides have been updated to reflect the new package
hierarchy

• Look at the end of the presentation for the step-by-step
procedure – this has been updated as well.

3/6/2002 BR 2

Synthetic Operator Mapping

How is ‘+’ mapped to an implementation?

In ieee.std_logic_arith:

function "+"(L: UNSIGNED; R: SIGNED) return SIGNED is
-- pragma label_applies_to plus
-- synopsys subpgm_id 238
constant length: INTEGER :=

max(L'length + 1, R'length);

begin
return plus(CONV_SIGNED(L, length),

CONV_SIGNED(R, length)); -- pragma label plus

end;

The function ‘plus’ determines the simulation functionality
of ‘+’

3/6/2002 BR 3

-- both arrays must have range (msb downto 0)
function plus(A, B: SIGNED) return SIGNED is

variable carry: STD_ULOGIC;
variable BV, sum: SIGNED (A'left downto 0);
-- pragma map_to_operator ADD_TC_OP
-- pragma type_function LEFT_SIGNED_ARG
-- pragma return_port_name Z

begin
if (A(A'left) = 'X' or B(B'left) = 'X') then

sum := (others => 'X');
return(sum);

end if;
carry := '0';
BV := B;
for i in 0 to A'left loop

sum(i) := A(i) xor BV(i) xor carry;
carry := (A(i) and BV(i)) or

(A(i) and carry) or
(carry and BV(i));

end loop;
return sum;

end;

plus function only
defines functionality.
ADD_TC_OP
defined in synthetic
library which
contains
implementations.

3/6/2002 BR 4

Synthetic Library -- DWSL.sl
A Synthetic library has a .sl extension (.sldb is the compiled
form. The file DWSL.sl was the synthetic library that was
used in Synopsys tutorial. Synthetic libraries contain
operators and modules.
library (DWSL.sldb) {

operator(ADD_TC_OP) {
pin (A) {
direction : input;

}
pin (B) {
direction : input;

}
pin (Z) {
direction : output;

}
}

Referenced in Synopsys
pragma in ‘plus’ function.

Operators are defined for
various arithmetic functions.
The port names do not match
the port name
implementations. Modules
define how operators map to
hardware.

3/6/2002 BR 5

module (DWDSP_add) {
design_library : "DWSL";
parameter(width) {

formula : "width('A')";
hdl_parameter : TRUE ;

}
pin (A) {
direction : input ; bit_width : "width" ;
}
pin (B) {
direction : input ; bit_width : "width" ;
}
pin (CI) {
direction : input ; bit_width : "1" ;
}

pin (SUM) {
direction : output; bit_width : "width" ;
}

pin (CO) {
direction : output ; bit_width : "1" ;
}

pin (OV) {
direction : output ; bit_width : "1" ;

}

A module corresponds to a
hardware implementation.

Port definitions match
VHDL port
definitions.

3/6/2002 BR 6

binding (b0) {
bound_operator : "ADD_TC_OP" ;
pin_association(A) { oper_pin : A ; }
pin_association(B) { oper_pin : B ; }
pin_association(CI) { value : "0" ; }
pin_association(SUM) { oper_pin : Z ; }
}

implementation (rpl) {
technology : gcmos_unit.db;
}
implementation (cla) {
technology : gcmos_unit.db;
}
implementation (csel) {
technology : gcmos_unit.db;
}

}

A binding
determines how
module pins map
to operator pins.

Each implementation
refers to a specific
RTL description of
this module. Can
have multiple
implementations.

2

3/6/2002 BR 7

Fixed Point Numbers
• The binary integer arithmetic you are used to is known by

the more general term of Fixed Point arithmetic.
– Fixed Point means that we view the decimal point being in the

same place for all numbers involved in the calculation.
– For integer interpretation, the decimal point is all the way to the

right

$C0
+ $25

$E5

192.
+ 37.

229.

Unsigned integers, decimal point to
the right.

A common notation for fixed point is ‘X.Y’, where X is the
number of digits to the left of the decimal point, Y is the number
of digits to the right of the decimal point.

3/6/2002 BR 8

Fixed Point (cont).

• The decimal point can actually be located anywhere in the
number -- to the right, somewhere in the middle, to the
right

$11
+ $1F

$30

Addition of two 8 bit numbers; different interpretations of
results based on location of decimal point

17
+ 31

48

xxxxxxxx.0
decimal point to right.
This is 8.0 notation.

4.25
+ 7.75

12.00

xxxxxx.yy
two binary fractional
digits. This is 6.2
notation.

0.07
+ 0.12

0.19

0.yyyyyyyy
decimal point to left (all
fractional digits). This is
0.8 notation.

3/6/2002 BR 9

Unsiged Overflow

• Recall that a carry out of the Most Significant Digit is an
unsigned overflow. This indicates an error - the result is
NOT correct!

$FF
+ $01

$00

255
+ 1

0

63.75
+ 0.25

0

xxxxxxxx.0
decimal point to right xxxxxx.yy

two binary fractional
digits (6.2 notation)

0.yyyyyyyy
decimal point to left (all
fractional digits). This
0.8 notation

0.99600
+ 0.00391

0

Addition of two 8 bit numbers; different interpretations of
results based on location of decimal point

3/6/2002 BR 10

Saturating Arithmetic

• Saturating arithmetic means that if an overflow occurs,
the number is clamped to the maximum possible value.

– Gives a result that is closer to the correct value
– Used in DSP, Graphic applications.
– Requires extra hardware to be added to binary adder.
– Pentium MMX instructions have option for saturating arithmetic.

$FF
+ $01

$FF

255
+ 1

255

63.75
+ 0.25

63.75

xxxxxxxx.0
decimal point to right xxxxxx.yy

two binary fractional
digits.

0.yyyyyyyy
decimal point to left (all
fractional digits)

0.99600
+ 0.00391

0.99600

3/6/2002 BR 11

Saturating Arithmetic

The MMX instructions perform SIMD operations between
MMX registers on packed bytes, words, or dwords.

The arithmetic operations can made to operate in Saturation
mode.

What saturation mode does is clip numbers to Maximum
positive or maximum negative values during arithmetic.

In normal mode: FFh + 01h = 00h (unsigned overflow)
In saturated, unsigned mode: FFh + 01 = FFh (saturated to
maximum value, closer to actual arithmetic value)

In normal mode: 7fh + 01h = 80h (signed overflow)

In saturated, signed mode: 7fh + 01 = 7fh (saturated to max
value)

3/6/2002 BR 12

Saturating Adder: Unsigned and 2’Complement
• For an unsigned saturating adder, 8 bit:

– Perform binary addition
– If Carryout of MSB =1, then result should be a $FF.
– If Carryout of MSB =0, then result is binary addition result.

• For a 2’s complement saturating adder, 8 bit:
– Perform binary addition
– If Overflow = 1, then:

• If one of the operands is negative, then result is $80
• If one of the operands is positive, then result is $7f

– If Overflow = 0, then result is binary addition result.

3

3/6/2002 BR 13

Saturating Adder: Unsigned, 4 Bit example

A[3:0]

B[3:0]
T[3:0]

+
CO

0

1111
1 SUM[3:0]

0

1

S
2/1 Mux

3/6/2002 BR 14

dwdsp_arith.vhd
Create a package that does saturating arithmetic, plus other
functions for DSP. Create a Synthetic Library that maps the
operators.

library ieee;
use ieee.std_logic_1164.all;
use IEEE.std_logic_arith.all;

package dwdsp_arith is

function dspmult(A: UNSIGNED; B: UNSIGNED) return
UNSIGNED;

function "+"(L: UNSIGNED; R: UNSIGNED) return
UNSIGNED;

end dwdsp_arith;

‘+’ does unsigned
saturating add. Will
talk about dspmult
later.

3/6/2002 BR 15

library ieee;
use ieee.std_logic_1164.all;
use IEEE.std_logic_arith.all;
function unsigned_plus(A, B: UNSIGNED) return UNSIGNED is

variable carry: STD_ULOGIC;
variable BV, sum: UNSIGNED (A'left downto 0);
-- pragma map_to_operator ADD_UNS_OP
-- pragma type_function LEFT_UNSIGNED_ARG
-- pragma return_port_name Z

begin
if (A(A'left) = 'X' or B(B'left) = 'X') then

sum := (others => 'X');
return(sum);

end if;
carry := '0'; BV := B;
for i in 0 to A'left loop

sum(i) := A(i) xor BV(i) xor carry;
carry := (A(i) and BV(i)) or

(A(i) and carry) or
(carry and BV(i));

end loop;
if (carry = '1') then -- saturate
sum := (others => '1');

end if;
return sum;

end;

Functionality for addition

unsigned_plus function in dwdsp_arith.vhd

Saturate done here.

Pragmas
for
Synthetic
operator
definition.

3/6/2002 BR 16

‘+’ function in dwdsp_arith.vhd

function "+"(L: UNSIGNED; R: UNSIGNED) return UNSIGNED is
-- pragma label_applies_to plus

constant length: INTEGER := max(L'length, R'length);
begin

return unsigned_plus(CONV_UNSIGNED(L, length),
CONV_UNSIGNED(R, length)); -- pragma label plus

end;

Just a wrapper around the unsigned_plus function –
maps ‘+’ to unsigned_plus.

3/6/2002 BR 17

DWDSP_add.vhd - module for saturating addition

library ieee;
use ieee.std_logic_1164.all;

entity DWDSP_add is
generic(width : POSITIVE);
port(A,B : std_logic_vector(width-1 downto 0);

CI : std_logic;
SUM : out std_logic_vector(width-1 downto 0));

end DWDSP_add;

Will create designware library called DWDSP and place
modules in this library.

The synthetic library will be called DWDSP.sl.

3/6/2002 BR 18

DWDSP_add_cla.vhd - CLA architecture for saturating addition

library IEEE, DW01,synopsys;
use IEEE.std_logic_1164.all;
use DW01.DW01_components.all;
use synopsys.attributes.all;

architecture cla of DWDSP_add is
attribute implementation: STRING;
attribute implementation of U1 : label is "cla";
signal tsum: std_logic_vector(width-1 downto 0);
signal satval : std_logic_vector(width-1 downto 0);
signal tco: std_logic;

begin

U1: DW01_add generic map (width => width)
port map (CI =>CI, A =>a, B=>b, SUM => tsum, CO => tco);

satval <= (others => '1');
sum <= tsum when (tco = '0') else satval;

end cla;

Note that DW01 adder is used with
extra logic mux logic for saturation.
Explicit control of CLA
implementation via attributes.

Can use modules from other DW libraries!

4

3/6/2002 BR 19

Example Fixed Point Application

Colors in Computer Graphics applications represented by Red,
Green, Blue (RGB) components.

Each component (RGB) is 8 bits; hence the term 24 bit color.

As an 0.8 Fixed point number, colors range from:
0.0 =< color < 1.0

(dark colors) (light colors)
0.0 = % 00000000

0.99 = % 11111111

Blue variation

3/6/2002 BR 20

Blend Operation

A blend operation takes two colors and blends them together to
form a new color. The Blend Factor (F) controls how much each
color contributes

Cnew = Ca * F + (1 - F) Cb

If F is 0.5 then the new color is an equal blend of Ca, Cb.

If F is 0.0, then new color is simply Cb.

If F is 1.0, then new color is simply Ca.

3/6/2002 BR 21

Representing 1.0
When the multiplication Ca * F is performed, if F = 1.0 want
the result to be exactly equal to the original value ‘Ca’.

However, the closest we can get to 1.0 using 8 bits (assuming
0.8 fixed point notation) is 0.111111112 = 0.99610

0.996 x Ca is NOT EQUAL to Ca!

To solve this problem, we will use 9 bits to represent the ‘F’
value. The lower 8 bits will be the fractional representation of
F. If F=1.0, then the MSB of F is equal to a ‘1’, and the other
bits are a don’t care.

When multiplying Ca * F, will use the lower 8 bits of F for the
multiply. If the MSB of F = ‘1’, then ignore output of multiplier
and use ‘Ca’.

3/6/2002 BR 22

F * Ca

CA[7:0]

x
T[15:0]

0

1

F[7:0]

F8

P[15:0]

F[8:0]

If F = 1.0, then F = ‘1xxxxxxxx’ (MSB of F = ‘1’).

CA[7:0] &00000000
Lower 8 bits = ‘0’

Note that when F = 1.0, the 16 bit result is the original CA
value with the least significant 8 bits padded with ‘0’s. In a
datapath, cannot keep expanding data width, so will typically
drop the 8 least signficant bits of the product.

3/6/2002 BR 23

dspmult operation in dwdsp_arith.vhd
-- very restrictive '*‘
-- always assume that B'width = A'width +1
-- also assume that vectors are declared with 'downto' range
function dspmult(A: UNSIGNED; B: UNSIGNED) return UNSIGNED is

-- pragma map_to_operator MULT_UNS_OP
-- pragma type_function MULT_UNSIGNED_ARG
-- pragma return_port_name Z

variable result : unsigned ((2*A'length)-1 downto 0);
begin
if (B(B'high) = '1') then

result((2*A'length)-1 downto A'length) := A;
for i in 0 to A'length-1 loop
result(i) := '0';

end loop;
else

result := normal_mult(unsigned(A),unsigned(B((B'high)-1
downto B'low)));

end if;
return result;
end;

Pragmas
for
Synthetic
operator
definition.

Multiplication by 1.0 (B can
represent 1.0)

normal_mult defined elsewhere in
dwdsp_arith – does the NxN bit multiply
if B is not equal to 1.0

3/6/2002 BR 24

dwdsp_mult.vhd

library IEEE;
use IEEE.std_logic_1164.all;

entity DWDSP_mult is

generic(width : POSITIVE);
port(A : std_logic_vector(width-1 downto 0);

F : std_logic_vector(width downto 0);
P : out std_logic_vector((2*width)-1 downto 0));

end DWDSP_mult;

Note that F is the 2nd operand, so it will be the righthand
operand in ‘L * R’.

Note that F is always 1 bit wider than ‘A’, returned product is
2 * width of A.

Module for implementing A*F .

5

3/6/2002 BR 25

dwdsp_mult_csa.vhd
You will need to fill this out. Use the multiplier from the
DW02 designware library, and use the ‘csa’ architecture (CSA
= carry save array). See the DWSL_add_cla.vhd file for
structure hints.

library IEEE;
use IEEE.std_logic_1164.all;

entity DW02_mult is
generic(A_width: NATURAL; -- multiplier wordlength

B_width: NATURAL); -- multiplicand wordlength
port(A : in std_logic_vector(A_width-1 downto 0);

B : in std_logic_vector(B_width-1 downto 0);
TC : in std_logic; -- signed -> '1', unsigned -> '0'

PRODUCT : out
std_logic_vector(A_width+B_width-1 downto 0));

end DW02_mult;

Set TC=‘0’ since we want an unsigned multiplier.

3/6/2002 BR 26

DWDSP.sl Synthetic Library

I have already created the DWDSP.sl Synthetic library for you.
You do not need to modify this file.

It contains two operators – ‘+’ and ‘*’.

The ‘+’ is mapped to the DWDSP_add.vhd module that
implements saturating addtion.

The ‘*’ is mapped to the DWDSP_mult.vhd module – you will
need to complete the DWDSP_mult_cla.vhd architecture.

3/6/2002 BR 27

dwdsp_arith_unsigned.vhd
This package provides a wrapper around ‘+’, and maps the ‘*’ to
the dspmult function from dwdsp_arith. Both functions accept
std_logic_vector values and convert them to the unsigned type.

This package also defines the oneminus function (discussed later)
library ieee,dwdsp, synopsys;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use synopsys.attributes.all;
use dwdsp.dwdsp_arith.all;

package dwdsp_arith_unsigned is
function "+"(L: STD_LOGIC_VECTOR; R: STD_LOGIC_VECTOR)

return STD_LOGIC_VECTOR;
function "*"(L: STD_LOGIC_VECTOR; R: STD_LOGIC_VECTOR)

return STD_LOGIC_VECTOR;
function oneminus(L: STD_LOGIC_VECTOR) return

STD_LOGIC_VECTOR;

end dwdsp_arith_unsigned;
3/6/2002 BR 28

‘+’ in dwdsp_arith_unsigned.vhd
function "+"(L: STD_LOGIC_VECTOR; R: STD_LOGIC_VECTOR) return
STD_LOGIC_VECTOR is

constant length: INTEGER := maximum(L'length, R'length);
variable result : STD_LOGIC_VECTOR (length-1 downto 0);

constant r0 : resource := 0;
attribute map_to_module of r0: constant is "DWDSP_add";
attribute implementation of r0: constant is "cla";
attribute ops of r0: constant is "a0";
begin

result := UNSIGNED(L) + UNSIGNED(R); -- pragma label a0

return std_logic_vector(result);
end;

This function converts std_logic_vector operands to unsigned,
then uses the ‘+’ operator from dsp_arith.

It also forces the mapping of ‘+’ to the DWDSP_add module with
architecture ‘cla’.

3/6/2002 BR 29

Mapping ‘+’ to DWDSP_add
• Forcing the mapping of ‘+’ of DWDSP_add, architecture ‘cla’

within dsp_arith_unsigned is sub-optimal
– Ideally, would like to do this from a dc_shell script
– The default is to map ‘+’, ‘*’ to the operators defined in the standard

synthetic library (standard.sldb), which maps these to DW01_add,
DW02_mult respectively.

• Unfortuntely, I have been unable to figure out the correct
magic to add to the dc_shell scripts to force use of
DWDSP_add, DWDSP_mult
– dc_shell stubbornly selects normal DW01_add, DW02_mult mappings

no matter what I try.
– We will live with this solution for now, but there is probably a better

way.
• Your RTL and behavioral code should use the

dwdsp_arith_unsigned package, and use the ‘+’, ‘*’ operators
for addition, multiplication.

3/6/2002 BR 30

‘*’ in dwdsp_arith_unsigned.vhd
function "*"(L: STD_LOGIC_VECTOR; R: STD_LOGIC_VECTOR) return
STD_LOGIC_VECTOR is

variable result : unsigned ((2*L'length)-1 downto 0);
variable a : unsigned((L'length-1) downto 0);
variable b : unsigned((R'length-1) downto 0);
constant r1 : resource := 0;
attribute map_to_module of r1: constant is "DWDSP_mult";
attribute implementation of r1: constant is "csa";
attribute ops of r1: constant is "a1";
begin

a := unsigned(L);
b := unsigned(R);
result := dspmult(a,b); -- pragma label a1
return std_logic_vector(result);

end;

dspmult function from dsp_arith package.

6

3/6/2002 BR 31

What about “1 – F” ?
For speed purposes, will represent 1-F as simply the one’s
complement of ‘F’. This will be inaccurate by 1 LSB, but is
fast.

Need to consider cases of 1.0, 0.0, and default.

-- F = 1.0
if (F(msb) = ‘1’) then F_minus = 0;

Else If (F = 0) then F_minus = “10000…0”;

Else F_minus(msb) = 0
F_minus(msb-1 downto 0) = F (msb-1 downto 0);

Do not need to define a synthetic module for this because of the
simplicity of the operation – normal logic synthesis via a
VHDL function will be sufficient.

3/6/2002 BR 32

-- does 1-L function where msb of L stands for 1.0
-- minus is simply one's complement

function oneminus(L: STD_LOGIC_VECTOR)
return STD_LOGIC_VECTOR is

variable result : STD_LOGIC_VECTOR (L'length-1 downto 0);
variable zero :STD_LOGIC_VECTOR (L'length-1 downto 0);
begin

zero := (others => '0');
if (L(L'high) = '1') then
result := (others => '0');

elsif (L = zero) then
result := (others => '0');
result(L'length-1) := '1';

else
result := not(L);
result(L'length-1) := L(L'high);

end if;
return result;

end;

F = 1.0, return 0

F = 0.0, return 1.0

Else return 1-F (one’s
complement)

1-F function (oneminus in dwdsp_arith_unsigned.vhd)

3/6/2002 BR 33

blend8 Datapath
To test your DWDSP_mult_cla, create an 8 bit blend datapath
as shown below:

Reg Ca Reg CbReg F

* *

1-f

Reg Pa Reg Pb

+
Reg Dout

Ca F Cb
All datapaths are 8
bits including
multiplier output (only
keep 8 most
significant bits).

The ‘+’, ‘*’ are as
defined in
dwdsp_arith_unsigned

Fully pipelined
datapath, all registers
loaded every clock.

3/6/2002 BR 34

blend8.vhd
library IEEE;
use IEEE.std_logic_1164.all;

entity blend8 is
port (clk,reset: std_logic;

ca,cb: in std_logic_vector(7 downto 0);
f: in std_logic_vector(8 downto 0);
p: out std_logic_vector(7 downto 0));

end blend8;

Reset is a synchronous reset – all registers zero when reset = ‘1’.

3/6/2002 BR 35

blend8_rtl.vhd

library ieee,dwdsp;
use ieee.std_logic_1164.all;
use dwdsp.dwdsp_arith_unsigned.all;

architecture rtl of blend8 is

--- empty architecture – fill this out

end rtl;

Use library dwdsp, package
dwdsp_arith_unsigned.

3/6/2002 BR 36

dsp_test.zip Archive

• Unpacks four VHDL source directories. Install these
under vhdl_course/src. Makefiles for each are in their
respective directories.
– synopsys/ -- install as Modelsim library, compile this first. This

is used by ‘dwdsp_arith_unsigned’ package.
– dwdsp/ -- install as Modelsim library, compile this second.
– gcmos/ -- update to gcmos library (fixed a problem with ‘dfr’)

compile this third.
– dsp_test/ -- install as Modelsim library. Provides a testbench for

your blend implementation.

• Once synopsys, dwdsp, gcmos libraries are compiled, will
not need to compile these again.

7

3/6/2002 BR 37

dsp_test Library
Files are:
dsp_test/Makefile.dsp_test --- makefile
dsp_test/blend8.vhd --- blend8 entity
dsp_test/blend8_rtl.vhd -- empty architecture – fill this out,

use for synthesis
dsp_test/blend8_gate.vhd -- empty architecture, replace this

with synthesized gate level architecture
dsp_test/dsp_tbblend.vdh --- test bench, contains

configurations for rtl, gate architectures

dsp_test/tbblend_gold.log -- log file of golden simulation (gate
and rtl architecture simulations should match)

3/6/2002 BR 38

dsp_dware.zip Archive

Will expand to dsp_dware directory – should be placed under
vhdl_course/synopsys. This is the directory that should be used
for Synopsys synthesis. Important files are (not all listed):

DWDSP_mult_csa.vhd – architecture for ‘*’ implementation

compile_dwdsp_lib.script – dc_shell script for compiling
DWDSP modules, use this after any changes to DWDSP* files.

rtl/blend8.vhd -- place both blend8 entity and RTL architecture
in here for synthesis.

blend8.script – dc_shell script for synthesizing ‘rtl/blend8.vhd’
using the DWDSP synthetic library. Output file will be
‘gate/blend8_gate.vhd’.

3/6/2002 BR 39

Steps to Complete this Assignment

• Complete the dsp_test/blend8_rtl.vhd architecture to
implement the blend8 datapath and match the golden output
file
– Uses ‘*’, ‘+’, oneminus functions from dsp_arith_unsigned package.

• Edit the dsp_dware/rtl/blend8.vhd file and place the ‘rtl’
architecture from dsp_test/blend8_rtl.vhd in here.

• Complete the DWDSP_mult_csa.vhd file to implement the ‘*’
function as discussed
– Use ‘dc_shell –f compile_dwdsp_lib.script ‘ to compile

• Synthesize a gate level architecture
– Use ‘dc_shell –f blend8.vhd’ – will produce gate/blend8_gate.vhd

• Copy ‘gate/blend8_gate.vhd’ to dsp_test/blend8_gate.vhd,
compile in Modelsim, and see if results of gate level
configuration simulation matches the RTL simulation.

3/6/2002 BR 40

blend8.rpt File
After synthesizing your design using dc_shell and the blend8.script
file, look inside the blend8.rpt file.

The implementation section should show dwdsp_mult, dwdsp_add
operators being used.

Implementation Report

===

| | | Current | Set |

| Cell | Module | Implementation | Implementation |

===

| add_47/a0/plus | DWDSP_add | cla | cla |

| mul_44/a1 | DWDSP_mult | csa | csa |

| mul_45/a1 | DWDSP_mult | csa | csa |

===

