WARNING - UPDATED SLIDES

- These slides and associated ZIP archives have been updated since they were first posted.
 - Copy your dware dsp_dware/DWDSP_mult_csa.vhd,
 - dsp_test/blend8_rtl.vhd to another location.
 - Remove your old dsp_dware, dsp_test directories, and unzip the updated archives.
- The slides have been updated to reflect the new package hierarchy
- Look at the end of the presentation for the step-by-step procedure this has been updated as well.

BR

3/6/2002

Synthetic Operator Mapping How is '+' mapped to an implementation? In ieee.std_logic_arith: function "+"(L: UNSIGNED; R: SIGNED) return SIGNED is -- pragma label_applies_to plus -- synopsys subpgm_id 238 constant length: INTEGER := max(L'length + 1, R'length); begin return plus(CONV_SIGNED(L, length), CONV_SIGNED(R, length)); -- pragma label plus end; The function 'plus' determines the simulation functionality of '+' 3/6/2002 BR 2

both arrays must have range (msb function plus(A, B: SIGNED) return SI variable carry: STD_ULOGIC; variable BV, sum: SIGNED (A'left pragma map to operator ADD_TC pragma type_function LEFT_SIGN pragma return_port_name Z	downto 0) GNED is downto 0); OP EE_ARG
begin	
<pre>sum := (others => 'X'); return(sum); end if; carry := '0'; BV := B; for i in 0 to A'left loop sum(i) := A(i) xor BV(i) xor carry := (A(i) and BV(i)) or (A(i) and carry) or (carry and BV(i)); end loop; return sum;</pre>	<i>plus</i> function only defines functionality. ADD_TC_OP defined in synthetic carry, library which contains implementations.
end; 3/6/2002 BR	3

<pre>module (DWDSP_add) { design_library : "DWSL"; parameter(width) {</pre>	A module corresponds to a
<pre>formula : "width('A')"; hdl_parameter : TRUE ; } </pre>	hardware implementation.
<pre>pin (A) { direction : input ; bit_width } pin (B) {</pre>	: "width" ;
<pre>direction : input ; bit_width } pin (CI) {</pre>	: "width" ; Port definitions match
<pre>direction : input ; bit_width : } pin (SUM) {</pre>	"1" ' VHDL port definitions.
<pre>direction : output; bit_width : }</pre>	: "width" ;
<pre>pin (CO) { direction : output ; bit_width : } pin (CV) {</pre>	: "1" ;
direction : output ; bit_width : } 3/6/2002 BF	: "1" ; R 5

<pre>binding (b0) { bound_operator : "ADD_TC_OP" ; pin_association(A) { oper_pin : pin_association(B) { oper_pin : pin_association(CI) { value : "(pin_association(SUM) { oper_pin } } }</pre>	A binding determines how b ; b ; b ; b ; b ; b ; b ; b ;
<pre>implementation (rpl) { technology : gcmos_unit.db; } implementation (cla) { technology : gcmos_unit.db; } implementation (csel) { technology : gcmos_unit.db; } }</pre>	Each <i>implementation</i> refers to a specific RTL description of this <i>module</i> . Can have multiple implementations.
3/6/2002 BR	6

	Fix	ked Point Numbers	
 The bina the more – Fixed same – For in right 	ary integer ar e general term <i>Point</i> means th place for all nu teger interpreta	ithmetic you are used to is n of Fixed Point arithmetic, at we view the decimal point bein mbers involved in the calculation tion, the decimal point is all the	known by ng in the way to the
\$C0 + \$25 \$E5 A common n number of di	192. + 37. 229. otation for fi gits to the lef	Unsigned integers, dec the right. xed point is 'X.Y', where 3 ft of the decimal point, Y is	imal point to K is the the number
of digits to th	ne right of the	e decimal point.	
5/6/2002		BK	7

	Fixed Point (cont).			
• The nur rigi	 The decimal point can actually be located anywhere in the number to the right, somewhere in the middle, to the right 			
Addit results b	ion of two 8 bit nur based on location of	nbers; different inte f decimal point	erpretations of	
\$11 + \$1F	17 + 31	4.25 + 7.75	0.07 + 0.12	
\$30	48	12.00	0.19	
	xxxxxxx.0 decimal point to right. This is 8.0 notation.	XXXXXX.yy two binary fractional digits. This is 6.2 notation.	0.yyyyyyyy decimal point to left (all fractional digits). This is 0.8 notation.	
3/6/2002		BR	8	

		Unsiged Overflo	DW
 Rec unsi NO[*] 	all that a carry gned overflow T correct!	out of the Most Sig . This indicates an	gnificant Digit is an error - the result is
Additi results b	on of two 8 bit based on location	numbers; differen on of decimal point	t interpretations of
\$FF	255	63.75	0.99600
+ \$01	+ 1	+ 0.25	+ 0.00391
\$00	0	0	0
dec	xxxxxxx.0	XXXXXX.yy two binary fractional digits (6.2 notation)	0.yyyyyyyy decimal point to left (all fractional digits). This 0.8 notation
3/6/2002		BR	9

Saturating Arithmetic · Saturating arithmetic means that if an overflow occurs, the number is clamped to the maximum possible value. - Gives a result that is closer to the correct value - Used in DSP, Graphic applications. - Requires extra hardware to be added to binary adder. - Pentium MMX instructions have option for saturating arithmetic. 63.75 0.99600 \$FF 255 + \$01 + 0.00391 1 + 0.25 _____ \$FF 255 63.75 0.99600 xxxxxxxx.0 xxxxxx.yy 0.уууууууу decimal point to right two binary fractional decimal point to left (all digits. fractional digits) 10 3/6/2002 BR

Saturating Arithmetic

The MMX instructions perform SIMD operations between MMX registers on packed bytes, words, or dwords.

The arithmetic operations can made to operate in Saturation mode.

What saturation mode does is clip numbers to Maximum positive or maximum negative values during arithmetic.

In normal mode: FFh + 01h = 00h (unsigned overflow) In saturated, unsigned mode: FFh + 01 = FFh (saturated to maximum value, closer to actual arithmetic value)

In normal mode: 7fh + 01h = 80h (signed overflow)

In saturated, signed mode: 7fh + 01 = 7fh (saturated to max value) $_{3/62002}$ BR

Saturating Adder: Unsigned and 2'Complement

- For an unsigned saturating adder, 8 bit:
 - Perform binary addition
 - If Carryout of MSB =1, then result should be a \$FF.
 - If Carryout of MSB =0, then result is binary addition result.
- · For a 2's complement saturating adder, 8 bit:
 - Perform binary addition
 - If Overflow = 1, then:
 - · If one of the operands is negative, then result is \$80
 - · If one of the operands is positive, then result is \$7f

BR

- If Overflow = 0, then result is binary addition result.

```
3/6/2002
```

11

12

dwdsp_arit	h.vhd	
Create a package that does saturatin functions for DSP. Create a Synthe operators.	ng arithmetic, plus other etic Library that maps the	
<pre>library ieee; use ieee.std_logic_1164.all; use IEEE.std_logic_arith.all;</pre>	'+' does unsigned saturating add. Will talk about <i>dspmult</i>	
package dwdsp_arith is	later.	
function dspmult(A: UNSIGNED; UNSIGNED;	B: UNSIGNED) return	
function "+"(L: UNSIGNED; R: U UNSIGNED;	NSIGNED) return	
end dwdsp_arith;		
3/6/2002 BR	14	

DWDSP_add.vhd - module for saturating addition	
library ieee; use ieee.std_logic_1164.all;	
<pre>entity DWDSP_add is generic(width : POSITIVE); port(A,B : std_logic_vector(width-1 downto 0); CI : std_logic; SUM : out std_logic_vector(width-1 downto 0)); end DWDSP_add;</pre>	
Will create designware library called DWDSP and place modules in this library.	
The synthetic library will be called DWDSP.sl.	
3/6/2002 BR	17

DWDSP_add_cla.vhd - CLA and	rchitecture for saturating additi	on
<pre>library IEEE, DW01, synopsys; use IEEE.std_logic_l164.all; use DW01.DW01_components.all; use synopsys.attributes.all; architecture cla of DWDSP_add is attribute implementation: STRIN attribute implementation of UL signal tsum: std_logic_vector(w signal tsum: std_logic_vector(w signal tco: std_logic; begin</pre>	Note that DW01 adder is used extra logic mux logic for satur Explicit control of CLA implementation via attributes. ^{G;} : label is "cla"; idth-1 downto 0); r(width-1 downto 0); c(width-1 downto 0); e> width) B=>b, SUM => tsum, CO => tco); se satval;	with ation.
end cla;		
3/6/2002	BR	18

dwdsp_arith_unsigned.vhd
This package provides a wrapper around '+', and maps the '*' to the <i>dspmult</i> function from <i>dwdsp_arith</i> . Both functions accept <i>std_logic_vector</i> values and convert them to the <i>unsigned</i> type.
This package also defines the oneminus function (discussed later)
<pre>library ieee,dwdsp, synopsys; use ieee.std_logic_l164.all; use ieee.std_logic_arith.all; use synopsys.attributes.all; use dwdsp.dwdsp_arith.all;</pre>
<pre>package dwdsp_arith_unsigned is function "+"(L: STD_LOGIC_VECTOR; R: STD_LOGIC_VECTOR) return STD_LOGIC_VECTOR; function "*"(L: STD_LOGIC_VECTOR; R: STD_LOGIC_VECTOR) return STD_LOGIC_VECTOR; comparison of the state of th</pre>
STD_LOGIC_VECTOR;
end_dwdsp_arith_unsigned; BR 27

Mapping '+' to DWDSP add

- Forcing the mapping of '+' of DWDSP add, architecture 'cla' within *dsp_arith_unsigned* is sub-optimal
 - Ideally, would like to do this from a dc shell script
 - The default is to map '+', '*' to the operators defined in the standard synthetic library (standard.sldb), which maps these to DW01_add, DW02_mult respectively.
- Unfortuntely, I have been unable to figure out the correct magic to add to the *dc_shell* scripts to force use of *DWDSP_add*, *DWDSP_mult*
 - dc_shell stubbornly selects normal DW01_add, DW02_mult mappings no matter what I try.
 - We will live with this solution for now, but there is probably a better way
- Your RTL and behavioral code should use the dwdsp_arith_unsigned package, and use the '+', '*' operators for addition, multiplication. BR

3/6/2002

29

3/6/2002

BR

31

dsp_test.zip Archive	
 Unpacks four VHDL source directories. Install these under vhdl_course/src. Makefiles for each are in their respective directories. synopsys/ install as Modelsim library, compile this first. This is used by 'dwdsp_arith_unsigned' package. dwdsp/ install as Modelsim library, compile this second. gcmos/ update to gcmos library (fixed a problem with 'dfr') compile this third. dsp_test/ install as Modelsim library. Provides a testbench for your blend implementation. Once synopsys, dwdsp, gcmos libraries are compiled, will not need to compile these again. 	
3/6/2002 BR 30	6

dsp_test Library
Files are:
dsp_test/Makefile.dsp_test makefile
dsp_test/blend8.vhd blend8 entity
dsp_test/blend8_rtl.vhd empty architecture - fill this out,
use for synthesis
dsp_test/blend8_gate.vhd empty architecture, replace this
with synthesized gate level architecture
dsp_test/dsp_tbblend.vdh test bench, contains
configurations for rtl, gate architectures
dsp_test/tbblend_gold.log log file of golden simulation (gate and rtl architecture simulations should match)

- 3/6/2002
- BR

dsp_dware.zip Archive Will expand to dsp_dware directory – should be placed under vhdl_course/synopsys. This is the directory that should be used for Synopsys synthesis. Important files are (not all listed): DWDSP_mult_csa.vhd – architecture for '*' implementation compile_dwdsp_lib.script – dc_shell script for compiling DWDSP modules, use this after any changes to DWDSP* files. rtl/blend8.vhd -- place both blend8 entity and RTL architecture in here for synthesis. blend8.script – dc_shell script for synthesizing 'rtl/blend8.vhd' using the DWDSP synthetic library. Output file will be 'gate/blend8_gate.vhd'. 302002 BR 38

Steps to Complete this Assignment

- Complete the *dsp_test/blend8_rtl.vhd* architecture to implement the blend8 datapath and match the golden output file
- Uses '*', '+', oneminus functions from dsp_arith_unsigned package.
 Edit the dsp_dware/rtl/blend8.vhd file and place the 'rtl' architecture from dsp_test/blend8_rtl.vhd in here.
- Complete the DWDSP_mult_csa.vhd file to implement the '*' function as discussed
- Use 'dc_shell -f compile_dwdsp_lib.script ' to compile
 Synthesize a gate level architecture
- Use 'dc_shell -f blend8.vhd' will produce gate/blend8_gate.vhd
 Copy 'gate/blend8_gate.vhd' to dsp_test/blend8_gate.vhd, compile in Modelsim, and see if results of gate level
- configuration simulation matches the RTL simulation.

3/6/2002

BR

39

37

blend8.rpt File

After synthesizing your design using *dc_shell* and the *blend8.script* file, look inside the *blend8.rpt* file.

The implementation section should show *dwdsp_mult, dwdsp_add* operators being used.

Implementation Report

1	1	Current	Set	
Cell	Module	Implementation	Implementation	1
add_47/a0/plus	DWDSP_add	cla	cla	1
mul_44/a1	DWDSP_mult	csa	csa	1
mul_45/a1	DWDSP_mult	csa	csa	1
3/6/2002		BR	40	