
1

BR 1/02 1

VHDL Packages: numeric_std

• The numeric_std package
– defines the unsigned and signed types based on the std_logic type
– Defines numeric operations such as +, -, *, /, abs, > , < , etc. for these

types

• Use the numeric_std package when need to perform arithmetic
operations (or synthesize arithmetic operators) on std_logic
types

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

BR 1/02 2

Unsigned vs. Signed

• Unsigned is an unsigned binary integer with the the MSB
as the left-most bit.

• signed is defined as a 2’s complement value with the most
significant bit as the left-most bit.
– This means the MSB of a:unsigned(7 downto 0) is a(7)
– The means the MSB of a:unsigned(0 to 7) is a(0)

• Need signed,unsigned types because arithmetic results of
operations can be different depending on the types.

type UNSIGNED is array (NATURAL range
<>) of STD_LOGIC;

type SIGNED is array (NATURAL range <>)
of STD_LOGIC;

BR 1/02 3

Supported Operations

• Abs, unary –
• +, -, *, / (division), rem, mod
• >, <, <=, >=, =, /=
• Shift_left, shift_right, rotate_left, rotate_right
• Sll, srl, rol, ror
• Resize
• To_integer, to_unsigned, to_signed
• Not, and,or,nand,nor,xor,xnor
• Std_match
• To_01

BR 1/02 4

Metalogical and ‘Z’ Values

• A metalogical value is defined as ‘X’, ‘W’, ‘U’, or ‘-’
• A high impedance value is ‘Z’
• If any bit in an operand to a numeric_std function contains

a metalogical or high impedance value (‘Z’), the result is
returned with all bits set to ‘X’.
– One exception, the ‘std_match’ function

• A value is well-defined if it contains no metalogical or high
impedance values.

BR 1/02 5

Conversions

Std_ulogic_vector, std_logic_vector, unsigned, signed are all
closely related types (subtypes of std_ulogic).

Use explicit type casts when assigning one type to another

signal a_us,b_us: unsigned(7 downto 0);
signal a_s,b_s: signed(7 downto 0);
signal a,b: std_logic_vector(7 downto 0);

a <= std_logic_vector(a_s);
a_s <= signed(a_us);
a_us <= unsigned(a);
b_s <= signed(a);

Type cast specifies name
of target type.

BR 1/02 6

Integer Conversions

function TO_INTEGER (ARG: UNSIGNED) return NATURAL;

function TO_INTEGER (ARG: SIGNED) return INTEGER;

function TO_UNSIGNED (ARG, SIZE: NATURAL) return UNSIGNED;

function TO_SIGNED (ARG: INTEGER; SIZE: NATURAL) return SIGNED;

Basically the same functions as in the std_logic_1164
package.

2

BR 1/02 7

Different forms of ‘+’

function "+" (L, R: UNSIGNED) return UNSIGNED;

function "+" (L, R: SIGNED) return SIGNED;

function "+" (L: UNSIGNED; R: NATURAL) return UNSIGNED;

function "+" (L: NATURAL; R: UNSIGNED) return UNSIGNED;

function "+" (L: INTEGER; R: SIGNED) return SIGNED;

function "+" (L: SIGNED; R: INTEGER) return SIGNED;

Note different combinations of allowable operands.

For synthesis, there is a problem – do not have access to carry-
in, or carry-out which would be very useful. Would have to
use operands with 2-extra bits to get access to both carry-in
and carry-out. BR 1/02 8

Mixed Signed/Unsigned Operands

• Note that the defined forms of ‘+’ do not have mixed
unsigned/signed operands

• Must do explicit conversions if want to do mix
unsigned/signed operands

• This way the user decides how the sign bit should be
handled.

BR 1/02 9

Multiplication, Division

function "*" (L, R: UNSIGNED) return UNSIGNED;

-- Result subtype: UNSIGNED((L’LENGTH+R’LENGTH-1)
downto 0)

Note that N*N returns 2*N bit result

function "/" (L, R: UNSIGNED) return UNSIGNED;

-- Result subtype: UNSIGNED(L’LENGTH-1 downto 0)

BR 1/02 10

Resize

function RESIZE (ARG: SIGNED; NEW_SIZE: NATURAL)
return SIGNED;

-- Result subtype: SIGNED(NEW_SIZE-1 downto 0)

function RESIZE (ARG: UNSIGNED; NEW_SIZE: NATURAL)
return UNSIGNED;

-- Result subtype: UNSIGNED(NEW_SIZE-1 downto 0)

Change size of input vector. If new size is larger than
old, then sign extend the operand for signed numbers,
else fill with zeros.

If size decreases, for signed case keep sign bit but drop
leftmost part. For unsigned case, just drop leftmost
part.

BR 1/02 11

Std_match versus ‘=‘

• The std_match function compares two operands, with
relaxed matching over ‘=‘

• Compares each bit. Matching function for each bit returns
boolean TRUE if
– Both values are well-defined (not ‘X’ or ‘U’) and the values are the

same, or
– One value is ‘0’ and the other is ‘L’, or
– One value is ‘1’ and the other is ‘H’, or
– At least one of the values is the don’t care value (‘-’).

• The ‘=‘ function first converts both operands to integers,
then compares.
– Uses ‘To_01’ to map to ‘0’,’1’ values, then integer convert, then

compare.

BR 1/02 12

Real Number/Complex Number computation

• IEEE standard 1076.2-1996 defines MATH_REAL and
MATH_COMPLEX
– Useful for models that do significant floating point computation
– Not intended for synthesis purposes
– MATH_REAL packages defines mathematical constants (PI, e,

sqrt(2), etc.) and functions (trig functions, square root, X^Y, etc)
for REAL number computations.

– MATH_COMPLEX defines a complex number type and functions
dealing with complex numbers

• Before this standard, homebrew packages were used.

3

BR 1/02 13

VHDL Synthesizeable Subset

• The subset of VHDL that is synthesizable is limited
– Unfortunately, not all synthesis tools agree on what statements are

‘synthesizeable’

• IEEE std 1076.6-1999 defines the RTL synthesizeable
subset of the language and how language statements
should be interpreted for synthesis purposes.
– This is important as it enhances the portability of RTL models

across synthesis tools from different vendors.
– Much intellectual property of standard bus interfaces and building

blocks (I.e, PCI, Firewire, USB, CPUs) are distributed in RTL
form so want the RTL to be as portable as possible.

BR 1/02 14

An Example of Coding for Simulation vs. Synthesis

B: process (clk)
if (clk’event and clk = ‘1’) then

q < = d;

end if;

D
Q

C

A: process (clk)
if (clk = ‘1’) then

q < = d;

end if;

Processes A and B both
simulate exactly the
same.

For simulation, do
not need clk’event
because we know
that a clk’event
triggers the process.

The synthesis tool needs clk’event to infer that an edge-
triggered device should be synthesized, not a latch!!

BR 1/02 15

pragmas

• A pragma is an element of a language that is intended be
interpreted as a command that controls the action of the
compiler or synthesis tools

• The RTL synthesis standard defines two types of pragmas
– Attributes
– Metacomments

• A metacomment is a pragma embedded in a comment
statement. Two meta comments are defined

-- RTL_SYNTHESIS OFF
-- RTL_SYNTHESIS ON

This causes statements bracketed by these metacomments to
be ignored by the synthesis tool.

BR 1/02 16

pragmas (cont.)

• Only one attribute is defined as having a synthesis specific
interpretation

• The ENUM_ENCODING attribute is used specify the
encoding for a enumerated type
– One use is to specify encoding for FSM states

type mystate is (ST0,ST1,ST2,ST3);
attribute ENUM_ENCODING of mystate:

type is “0001 0010 0100 1000”;

Defines encoding for ST0 as “001”, ST1 as “0010”,
etc.

BR 1/02 17

RTL Synthesizeable standard

• The standard is basically the LRM with statements marked
out as being not recognized by a synthesis tool

• Most things are obvious
– ie., file operations, dynamic memory allocation are not

synthesizable
– Floating point types are not synthesizeable
– Delays on signals are ignored

• Arrays and Record types are fine as long as each field
specifies a synthesizeable type

• Look at the standard for more detail

