
1

1/22/2003 BR 1

Simulation #2: Bus Operation

• This lecture will discuss some topics that will be
useful for performing Simulation #2
– VHDL Variables
– Modeling of Finite State Machines
– Modeling of In/Out Ports
– Bus Operation

• Also see the link to Simulation #2 on the WWW
page

1/22/2003 BR 2

VHDL Variables
• VHDL variables come in two varieties: global and local
• Local variables can only be declared in processes,

procedures, and functions
process (clk, r)
variable a: integer := 0;
begin

......
a := a + 1;
.....

end;

• Variable assignments use the “ := “ operator
• Variable assignments take place immediately (unlike

signal assignments which only place entries on the time
queue; the time queue entries are not processed until the
process is suspended).

1/22/2003 BR 3

VHDL Variables (continued)
• Local variables are not visible outside of a process
• For a process, the value of a variable is static, i.e., it retains

its value between process invocations
• For a procedure or function, the value of the variable is re-

initialized each time the procedure or function is called
• A global variable is declared outside of a process using the

‘shared’ keyword. Will discuss global variables in more
detail later.

architecture a of myentity is
shared variable a: integer := 0;

process (clk, r)
begin
......
a := a + 1;
.....

end;
1/22/2003 BR 4

Finite State Machines

Combinational
Logic
Circuit

D FFs

n m

k k

k-bit
Present State

Value

k-bit
Next State

Value

CLK

A Mealy-type FSM is shown below. In a Mealy-type
FSM, the outputs are a function of both the present state
and the current inputs.

One way to model this to use a separate processes for the
state registers and combinational logic.

Inputs Outputs

1/22/2003 BR 5

FSM Example S0
A?

Z = 0

Z = 1

A?

Z = 1

Z = 0

1

1 Z = 0

S1
0

S2

A?Z = 1 1 0

S3

A?

Z = 0
01

0

1/22/2003 BR 6

Entity

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;

-- MEALY FSM machine
-- pstate A=0 A=1
--
-- ST0 | ST0 / 0 ST3/1 == entries are nextstate/outputZ
-- ST1 | ST1 / 1 ST0/0 == entries are nextstate/outputZ
-- ST2 | ST2 / 0 ST1/1 == entries are nextstate/outputZ
-- ST3 | ST2 / 0 ST1/0 == entries are nextstate/outputZ

--

entity mealy_fsm is
port (

a, clk: in std_logic;
z: out std_logic

);

end mealy_fsm;

2

1/22/2003 BR 7

Architecture
architecture behv of mealy_fsm is
-- enumerated type for state definitions
type mystate is (ST0,ST1,ST2,ST3);
signal p_state, n_state : mystate;

begin

seq_part: process(clk)
begin

if (clk = '0' and clk'event) then
p_state <= n_state;

end if;
end process seq_part;

-- note that this process triggers only on changes to any of its inputs,
-- namely 'p_state' and 'a‘
comb_part: process (p_state,a)
begin

-- assign default output values
z <= '0'; -- default is output
n_state <= p_state; -- stay in same state by default
case p_state is
when st0 => if (A = '1') then z <= '1'; n_state <= st3; end if;
when st1 => if (A = '1') then n_state <= st0;

else z <= '1'; end if;
when st2 => if (A = '1') then z <= '1'; n_state <= st1; end if;
when st3 => if (A = '0') then n_state <= st2;

else n_state <= st1; end if;
end case;

end process comb_part;

end behv;

falling edge state
register

1/22/2003 BR 8

Keep Track of #Clock Cycles in State ST0: Try #1
comb_part: process (p_state,a)
variable st0_count: integer := 0;

begin
-- assign default output values
z <= '0'; -- default is output
n_state <= p_state; -- stay in same state by default
case p_state is
when st0 => if (A = '1') then z <= '1'; n_state <= st3; end if;

st0_count := st0_count +1 ;

when st1 => if (A = '1') then n_state <= st0;
else z <= '1'; end if;

when st2 => if (A = '1') then z <= '1'; n_state <= st1; end if;
when st3 => if (A = '0') then n_state <= st2;

else n_state <= st1; end if;
end case;

end process comb_part;

Wrong: st0_count incremented anytime ‘A’ changes while in state ST0

1/22/2003 BR 9

Keep Track of #Clock Cycles in State ST0: Try #2
comb_part: process (p_state,a)
variable st0_count: integer := 0;

begin
-- assign default output values
z <= '0'; -- default is output
n_state <= p_state; -- stay in same state by default
case p_state is
when st0 => if (A = '1') then z <= '1'; n_state <= st3; end if;

if (pstate’event) then
st0_count := st0_count +1 ;

end if;
when st1 => if (A = '1') then n_state <= st0;

else z <= '1'; end if;
.......

Wrong: st0_count incremented anytime we enter ST0 from a different state
(pstate changes) but does not count clock cycles that A=0 and we are in
state ST0.

1/22/2003 BR 10

Keep Track of #Clock Cycles in State ST0: Try #3
comb_part: process (p_state,a,clk)
variable st0_count: integer := 0;

begin
-- assign default output values
z <= '0'; -- default is output
n_state <= p_state; -- stay in same state by default
case p_state is
when st0 => if (A = '1') then z <= '1'; n_state <= st3; end if;

if (clk’event and clk = ‘1’) then
st0_count := st0_count +1 ;

end if;
when st1 => if (A = '1') then n_state <= st0;

else z <= '1'; end if;
.......

Will work; clk must be added to sensitivity list, and the check occurring on
rising edge will cause the variable to be updated in the middle of the clock
cycle. If you check the falling edge of clk, then the variable is updated at
the end of the clock cycle. The process is executed twice every clock cycle
(once for each change in clk).

rising edge check

added clock

1/22/2003 BR 11

Keep Track of #Clock Cycles in State ST0: Try #4
comb_part: process (p_state’transaction,a)
variable st0_count: integer := 0;

begin
-- assign default output values
z <= '0'; -- default is output
n_state <= p_state; -- stay in same state by default
case p_state is
when st0 => if (A = '1') then z <= '1'; n_state <= st3; end if;

if (pstate’active) then
st0_count := st0_count +1 ;

end if;
when st1 => if (A = '1') then n_state <= st0;

else z <= '1'; end if;
.......

Will work; ‘active returns true anytime a transaction (an assignment) is
made to pstate, which happens every clock cycle via the seq_part process.
Added pstate’transaction to sensitivity list because ‘transaction returns a
signal that toggles for each transaction. This process executes only once
per clock cycle, is more efficient than previous solution.

1/22/2003 BR 12

Count # of state transitions from ST0 to ST3
Try #1 (some code deleted for brevity) – put counter in ST0

comb_part: process (p_state,a)
-- 'counter' will count transitions from 'st0' to 'st3‘
variable counter: integer := 0;

begin
-- assign default output values
z <= '0'; -- default is output
n_state <= p_state; -- stay in same state by default
case p_state is
when st0 => if (A = '1') then z <= '1'; n_state <= st3;

counter := counter + 1;
end if;

when st1 => if (A = '1') then n_state <= st0;
else z <= '1'; end if;

.......

Will not work if A goes from ‘0’ to ‘1’ and back to ‘0’ while
in state ST0. Will not transition to ST3, yet counter is
incremented.

Note sensitivity list signals

3

1/22/2003 BR 13

Count # of state transitions from ST0 to ST3

Try again…put counter in State ST3
when st3 =>
counter := counter + 1;

when st3 =>
if (p_state'event) then

counter := counter + 1;
end if;

Wrong, will increment anytime we are in ST3 and process triggers
– not that a change in ‘A’ can cause the process to trigger.

This will work because counter only incremented on change to
p_state and only way to get to ST3 is from ST0.

1/22/2003 BR 14

Count # of state transitions from ST0 to ST3

What if ASM chart has more than one way to get to ST3?
(i.e., the ASM chart included a transition from ST2 to ST3,
but only wanted to count transitions from ST0 to ST3).

when st3 =>
-- the signal attribute 'last_value returns the last value of the
-- signal; it is useful here.
if (p_state'event and (p_state'last_value = st0)) then

counter := counter + 1;
end if;

The attribute ‘last_value gives the previous value of the signal –
can use it here to see if previous state was ST0.

1/22/2003 BR 15

Port Types
• VHDL port types can be in, out, inout, buffer

– in intended for input-only ports. Cannot assign values to ports of
type in.

– out intended for output-only port. Cannot read the value of ports
of type out.

– inout intended for bidirectional ports
– buffer type is like an out port but can be read from

• Do not use buffer ports. Problems are:
– a buffer port can only have one driver on it
– a buffer port must be connected to another port of type buffer,

which means buffer ports propagate through hierarchy
• If you need to read a value from an out port, use the

‘driving_value attribute
– Will return the driving value of the port, can be used to read the

driving value of a port of type out.

1/22/2003 BR 16

Modeling a bidirectional port

• A bidirectional port means that sometimes your model is
providing the drive, and that sometimes another
component is providing the drive for the signal

• Use an inout type for the port type
– y: inout std_logic ;

• Internal to your model, keep track of when your model is
supposed to be providing the drive. I usually declare two
internal signals
– y_out -- internal signal that model will drive
– dir -- ‘direction’ signal that tells me if the model is supposed to

be driving or not

1/22/2003 BR 17

Modeling a bidirectional port
entity example is
port (clk: std_logic;

y: inout std_logic));

end example;

architecture a of example is
signal dir : std_logic := ‘0’; -- ‘0’ reading, ‘1’ driving
signal y_out : std_logic := ‘Z’;

begin

y <= y_out when (dir = ‘1’) else ‘Z’;

.....

process (clk)
.... some process

when STATE_A: dir <= ‘1’; y_out <= ‘1’; -- drive some value
......

when STATE_K: dir <= ‘0’; --- let some other model drive this signal

........
when STATE_N: if (y = ‘1’) then.... -- can read an ‘inout’ port

-- will read the resolved value!!

‘Z’ value is important
– this lets external
component overdrive
this signal

1/22/2003 BR 18

Sim #2 bbusy signal

CPU #0 CPU #1

bbusy bbusy

pullup ‘H’

bbusy is a ‘bus busy’ signal. When a CPU owns the bus, it should drive the
bbusy line to ‘0’. When a CPU does not own the bus, it should have the line
released (driving a ‘Z’). When a CPU is granted the bus, it must watch the
bbusy line to see if the bus is free (value of ‘H’). If the bus is free and the CPU
has been granted the bus, then the CPU can claim the bus by driving bbusy low.
Note that bbusy is a bidirectional signal!

