
Bob Reese 6/27/01

Memory Issues in Graphics Hardware 1

6/27/01 1

Verilog
� See EE 8999 page for Verilog links.

� Verilog compile command under Model tech is
‘vlog’ on NT, on Unix it is “qvlcom”

� See ~reese/verilog_train for many Verilog
examples

� Book “Verilog QuickStart” from Kluwer Academic
publishers is a good book, but expensive.

6/27/01 2

VHDL vs Verilog:
Process Block
VHDL:

process (siga, sigb)
begin

…...
end;

Verilog:
always @ (siga or sigb)

begin
….

end

Concurrent signal assignment:
c <= a and b (VHDL)
assign c = a & b ;

6/27/01 3

VHDL vs Verilog (cont):
Signal Delays

a <= transport b after 1 ns; (VHDL)

#1 assign a = b; (Verilog)

‘a’ output is delayed by 1 time unit

The ‘# ‘ operator is the delay operator. # N will delay for
N simulation units. Delays can assigned to both inputs
and outputs.

#1 assign a = #1 b;

‘b’ is delayed by 1 unit, then assigned to ‘a’, which is then
delayed by 1 time unit.

Bob Reese 6/27/01

Memory Issues in Graphics Hardware 2

6/27/01 4

Infinite Loop
always

begin

c = a & b ;

end;

Same as infinite process loop in VHDL.

6/27/01 5

Clock Generator
VHDL: signal clk : std_logic := ‘0’;

process
begin

clk <= not (clk) after clkperiod/2;
wait on clk;

end;
Verilog:

initial clk = 0;
always #(clkperiod/2) clk = ~ clk;

6/27/01 6

Verilog Data Types
bit , can take on values of ‘1’, ‘0’, ‘x’, ‘z’

integer : 32 bits

integer a,b;

reg (register, holds unsigned integers N bits wide)

reg x, y[7:0], z[0:7] ;

x is a 1 bit register, y,z are 8 bit registers. Most
significant bit is always left most bit.

real x, y;

time t1, t2;

Time value are 64 bits, units can be set on a per module
basis.

Bob Reese 6/27/01

Memory Issues in Graphics Hardware 3

6/27/01 7

Verilog Data Types (cont)
module string1;
reg[8*13 : 1] s;
initial begin

s = "Hello Verilog";
$display("The string %s is stored as %h", s, s);

end
endmodule

Strings are stored in registers that hold 8 * the number of characters in the
string.

6/27/01 8

Register with Sync Clear
module reg16t(q, d, clk, clr_n);
input [15:0] d;
input clk, clr_n;
output [15:0] q;
reg [15:0] q;

always @(posedge clk)
if(clr_n)
q = #1 d;

else
#1 q = 0;

endmodule

6/27/01 9

Verilog Primitives
� Gates

� and, nand, or, nor, xor, xnor
� Buffers

� buf, not, pulldown, pullup, bufif0, notif0, bufif1, notif1
� Transistors

� nmos,pmos,cmos, (unidirectional switches)
� rnmos,rpmos, rcmos (strength reduction of

unidirectional switches)
� tran,rtran, tranif0,rtranif0, tranif1, rtranif1 (bi-

directional switches with their strength reduction
equivalents)

Bob Reese 6/27/01

Memory Issues in Graphics Hardware 4

6/27/01 10

Structural Model
module mux(OUT, A, B, SEL);
output OUT;
input A,B,SEL;

not I5 (sel_n, SEL);

and I6 (sel_a, A, SEL);
and I7 (sel_b, sel_n, B);

or I4 (OUT, sel_a, sel_b);

endmodule

primitive name

instance name

output

inputs

6/27/01 11

MUX

I5 I7

I6SEL
A

B

OUT
I4

AND, OR, XOR, etc primitives can have any
number of inputs.

sel_a

sel_b

6/27/01 12

Two Muxes
module mux2(OUT, A, B, SEL);
output [1:0] OUT;
input [1:0] A,B;
input SEL;

mux hi (OUT[1], A[1], B[1], SEL);
mux lo (OUT[0], A[0], B[0], SEL);

endmodule

Bob Reese 6/27/01

Memory Issues in Graphics Hardware 5

6/27/01 13

Wires
� Wire declarations are used in structural models to connect

instance pins that are not connected to ports
� wire sum; // one bit wire
� wire [7:0] d, e, f; // three 8-bit vectors

� A vector is a wire wider than 1 bit
� Different wire types available

� supply1, supply0 - always ‘1’, always ‘0’ with a strength of
‘supply’.

� wand - wired and
� wor - wired or
� tri1 - wire with built in pullup
� tri0 - wire with built in pulldown
� trireg - storage node for switch-level modeling

6/27/01 14

Drive Strengths
� 8 different drive strengths

� 0 to 7, 0 is weakest, 7 is highest
� Drive table

� 0 (highz0, highz) high impedance
� 1 (- , -) small capacitor
� 2 (- , -) medium capacitor
� 3 (weak0, weak1) weak drive
� 4 (- , -) large capacitor
� 5 (pull0, pull1) pull drive
� 6 (strong0, strong1) strong drive
� 7 (supply1, supply0) supply drive

� Default drive is ‘strong’.

6/27/01 15

Using Drive Strengths,
Delays in Primitives

� Nand gate with open drain output
� nand (strong0, highz1) G0 (y, a, b)

� Wimpy buffer
� buff (weak1, weak0) #6 G1 (out, in)
� Note that this buffer output has a delay of 6 units

� Delays on primitive outputs can specified as (rise, fall, turnoff).
Only use turnoff if output can go to ‘z’ value

� and #(3,2) a(c, w, z); rise/fall delay
� Delays can also have (min:typ:max) values

� bufif0 #(2:3:4, 1:2:3, 3:4:5) b2 (f, e, d)
� Note that each rising, falling, turnoff delay has min, typical,

maximum values.

Bob Reese 6/27/01

Memory Issues in Graphics Hardware 6

6/27/01 16

Time Units specified in Module
`timescale 1ns / 100ps
module mod1;

// #1.1 in this module = 1.1 ns
endmodule

`timescale 100ps / 1ps
module mod2;

// #2 in this module = 200 ps
endmodule;

6/27/01 17

User Defined Primitives (UDP)
Use truthtables to describe module behavior. Below is a
MUX description:
primitive pmux(y, sel, a, b);
output y;
input sel, a, b;
table
// s a b : y;

0 0 ? : 0;
0 1 ? : 1;
1 ? 0 : 0;
1 ? 1 : 1;

endtable
endprimitive

UDP table symbols: ‘1’, ‘0’, ‘x’ (unknown), ‘?’ (matches 0, 1, x)
If a set of inputs is not covered by a line in the table, output is unknown.

6/27/01 18

UDP for D Flip-Flop
primitive dff(q,clk,d);
output q;
reg q;
input clk, d;
table
// c d : q : q+

r 0 : ? : 0;
r 1 : ? : 1;
f ? : ? : -; // no change on falling clock
? * : ? : -; // no change on steady clock

endtable
endprimitive

Sequential UDP table symbols: ‘r’ (rising), ‘f’ (falling),
‘*’ (any change), ‘-’ (output remains unchanged).

Bob Reese 6/27/01

Memory Issues in Graphics Hardware 7

6/27/01 19

UDP misc
� Only 1 output allowed, max of 10 inputs
� Cannot use ‘z’ in input table
� UDP instances just like module instance declarations

� output must come first followed by input names
� In a sequential UDP, all transitions that do not

affect the output must be specified, or output
goes to ‘x’
� Input transitions and their effect on the output

must be fully specified

6/27/01 20

Parameterized MUX
module nmux4(a,b,c,d,sel,y);
// Parameterized n bit wide 4 to 1 mux.
parameter size = 32; // default to 32 bits
input [size-1 : 0] a,b,c,d;
input [1:0] sel;
output [size-1 :0] y;
reg [size-1 :0] y;

always @(a or b or c or d or sel)
case (sel)

0 : y = a;
1 : y = b;
2 : y = c;
3 : y = d;
default : y = 'bx;

// will automatically size to fit
endcase

endmodule

6/27/01 21

TestBench
module test_adder;
reg [7:0] a,b;
reg carry_in ;
wire [7:0] sum;
wire carry_out;

adder8 dut(carry_out, sum, a,b, carry_in);
// initial block always executed at time 0, only once
initial begin
a = 0; b = 0; carry_in = 0;

100 if (sum !== 0) begin
$display("sum is wrong");
$finish; // ‘finish’ causes simulator exit

end

a = 1; b = 0; carry_in = 0;
100 if (sum !== 1) begin

$display("sum is wrong");
$finish;

end
$finish
end

endmodule

Bob Reese 6/27/01

Memory Issues in Graphics Hardware 8

6/27/01 22

Verilog Strengths
� Built in primitives for gate level, switch level

modeling
� UDPs nice, compact method for specifying

custom gate behavior
� Built-in strength system, multi-valued logic system
� Delay system with rising/falling/turnoff with

max/min/typical values
� Also has a defined interface for calling modules

written in other programming languages such as ‘C’
� helps offset weakness in high level modeling

6/27/01 23

Verilog Weaknesses
� Not well suited for complex, high level modeling

� No user defined type definition
� No concept of libraries, packages, configurations
� No ‘generate’ statement - can’t build parameterized

structural models
� No complex types above a two-dimensional array

6/27/01 24

Bottom Line
� Usually a company is either all Verilog or all

VHDL
� Most VLSI companies (US) use Verilog
� Texas Instruments, Intel use VHDL - most

European companies use VHDL
� Model Tech supports mixed Verilog/VHDL

models
� Would be nice to have low level blocks

specified in Verilog, high level blocks in VHDL
� Extensions to both Verilog and VHDL for

analog simulation (mixed signal) are in the
works.

