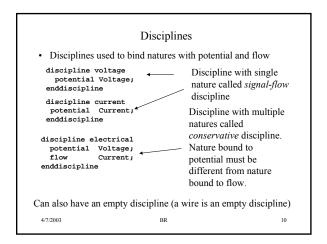
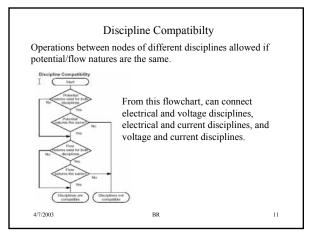
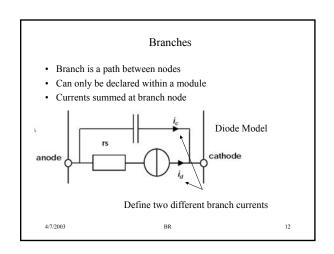
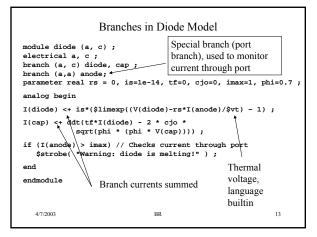

Simulation: flow vs. potential Kirchhoff's Laws A node Kirchhoff's Flow Law Kirchhoff's Pi otential; + potential; + otential; + potential; = 0 $flow_2 + flow_2 + flow_3 = 0$ Sum of all flows out Sum of all potentials of a node at any around a loop at any instance of time is 0 instance of time is 0 Potential defined with respect to reference node (I.e. gnd). Flow has a direction. BR 3

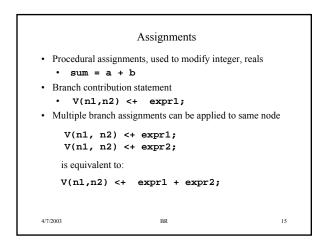

 Mathematical descriptions used to relate poten	l to potential)
flows I.e. I = C dv/dt (flow out of a capacitor related Simulator uses Kirchoff's laws and mathemat	ical
descriptions of individual components to deve	elop a system
of equations for entire network Equations are differential and non-linear, cannot sc Use iterative method that approximates a solution t Tolerances used to control accuracy of simulation 	ive directly

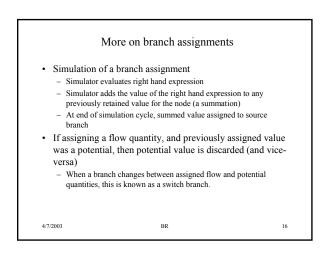


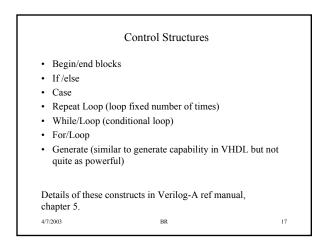


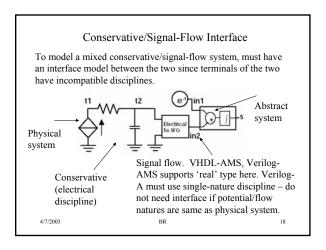


Some pre-	defined Natures	
<pre>nature Current units = "A"; access = I; idt_nature = Charge; endnature</pre>	<pre>nature Voltage units = "V"; access = V; idt_nature = Flux; endnature</pre>	
<pre>nature Charge units = "coul"; access = Q; ddt_nature = Current; endnature"</pre>	<pre>nature Flux units = "Wb"; access = Phi; ddt_nature = Voltage; endnature"</pre>	
Defined in "discipline.h" inclu	de file	
(tools/dfII/samples/spectreHD)	L/include, or Appendix C)	
Many others (Maneto_Motive_ Position, Acceleration)	Force, Temperature, Power,	

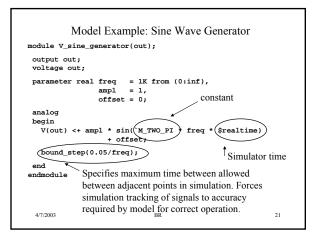


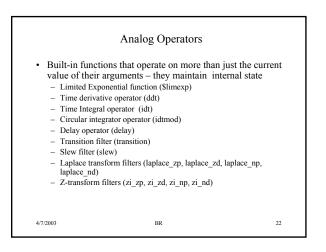


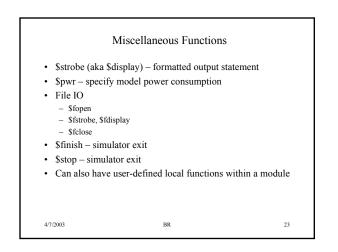




imulation time in seconds temperature in degrees voltage (<i>kT/q</i>) at current	Real Real
in a substance in the second s	Real
voltage (kT/g) at current	
n temperature	Real
	Real
	voltage at temperature ecified in degrees Kelvin







	constants.h	
Many constants defi verilog reference ma	ned in constants.h (appendix C in nual).	l
`define M_E	2.7182818284590452354	
`define M_LOG2E	1.4426950408889634074	
`define M_LOG10E	0.43429448190325182765	
define M_LN2	0.69314718055994530942	
define M_LN10	2.30258509299404568402	
`define M_PI	3.14159265358979323846	
`define M_TWO_PI	6.28318530717958647652	
`define M_PI_2	1.57079632679489661923	
etc Refer to them	in code via:	
`M_LN2		
Note the backquote in	front of the constant name.	
4/7/2003	BR	19

Model	Example: Capacitor	
<pre>module cap(p,n); inout p,n; electrical p,n;</pre>	Electrical disc bidirectional to	* ·
<pre>parameter real c=0 fro analog I(p,n) <+ c*ddt(V(p endmodule;</pre>	Specific	es range on eter
Time derivative oper Predefined as part of	ator, implements dv/dt the language.	
4/7/2003	BR	20

Mecha	anical Model: Friction	
<pre>module damper1d(n1,n2) module spring1d(n1,n2)</pre>	Kinematic disc	
inout n1,n2; kinematic n1,n2;	position (poten (flow) natures.	lital), lorce
<pre>parameter real k = 10 // spring constant giv</pre>	from (0:inf); en in n/m - Newto	ns/meter
<pre>parameter real 1 = 0. // length of spring in</pre>		
analog		
F(n1,n2) <+ k*(Pos(n1,n2) - 1);	
endmodule		
	cal spring is akin to a resist Spring constant is equivale	