
1

4/7/2003 BR 1

Verilog-AMS
• Verilog-AMS: analog and mixed signal extensions to Verilog

– On track to become an IEEE Standard
• An earlier language standard was called Verilog-A (Verilog with

Analog extensions)
– Verilog-A is a subset of Verilog-AMS

• Important extensions of Verilog-AMS over Verilog-A
– Both digital and analog signals can be included in same module
– User-defined conversions modules are automatically inserted in netlist if

analog signal connected to digital signal or vice-versa
– More freedom in accessing digital/analog signals within a module

• These slides will look at some example models and point out important
features

– Http://www.eda.org/verilog-ams
• Much of the same terminology used in VHDL-AMS

Images/Notes from Verilog A reference manual, Cadence, also DAC’99 VHDL-AMS
tutorial by Christen, Bakalar, Dewey, Moser.

4/7/2003 BR 2

Mixed Signal Terminology

Node: connection
point in a system

Port: component’s
external connection
point. A port is also a
node.

4/7/2003 BR 3

Simulation: flow vs. potential

Sum of all flows out
of a node at any
instance of time is 0

Sum of all potentials
around a loop at any
instance of time is 0

A node

Potential defined with respect to reference node (I.e. gnd).
Flow has a direction.

4/7/2003 BR 4

Conservative vs. Signal-Flow
• A conservative system obeys Kirchoff’s laws

– Nodes have both potential and flow
• A signal-flow system has only flow or potential associated

with a node
– Verilog-A supports modeling of signal-flow systems (sort of,

really need ‘real’ data types for signals to do this right).
– Verilog-A supports mixing of conservative and signal-flow nodes

• Physical systems are conservative systems
• Abstract systems can use a signal-flow graph model
• View potential as across a component (voltage,

temperature, velocity)
• View flow as through a component (current, force, heat

flow rate)

4/7/2003 BR 5

Simulation

• Mathematical descriptions used to relate potentials and
flows
– I.e. I = C dv/dt (flow out of a capacitor related to potential)

• Simulator uses Kirchoff’s laws and mathematical
descriptions of individual components to develop a system
of equations for entire network
– Equations are differential and non-linear, cannot solve directly
– Use iterative method that approximates a solution to the equations
– Tolerances used to control accuracy of simulation

4/7/2003 BR 6

v – vector of all node values
v0 – initial conditions of all node values,
may not be close to actual values

∆T – timestep (transient analysis)

Convergence: is new value close enough to
previous value? (within ‘reltol’, relative
tolerance and under absolute tolerance),
and is Kirchoff’s flow law satisfied?.

Reltol typically 0.001 of previous
difference.

Absolute tolerance (abstol, what error can
be ignored). Typically 1000 to 1,000,000
smaller than typical value in circuit.
Absolute tolerance compared against zero.

2

4/7/2003 BR 7

module V_integrator(in,out);

input in;
output out;
voltage in,out;

// integration coefficient
parameter real ki=1.0 exclude 0;
parameter real dcval = 0;

real k1;
initial k1 = 1/ki;

analog

V(out) <+ k1*idt(V(in),dcval);

endmodule

Sample Model: Voltage Integrator

Port direction
(input,output,inout)

Port discipline

Module parameters,
can specify initial
values, other limits.

Local variable
Executed at
simulator startup

Behavior specified
in analog block

Voltage assignment
Branch assignment 4/7/2003 BR 8

Natures and Disciplines

• A nature is a collection of attributes
– Attributes characterize quantities solved for during simulation

nature Mycurrent
units = "A" ;
access = I ;
idt_nature = charge ;
abstol = 1e-12 ;
huge = 1e6 ;

endnature

Example nature, attributes
predefined by Cadence (see
Chap4)

Name of the access
function for this nature

Tolerance for convergence

Maximum allowed change
in timestep

Nature to apply when idt
(time integral) or idt_mod is
applied

4/7/2003 BR 9

Some predefined Natures

nature Current
units = "A";
access = I;
idt_nature = Charge;
endnature

nature Charge
units = "coul";
access = Q;
ddt_nature = Current;
endnature"

nature Voltage
units = "V";
access = V;
idt_nature = Flux;
endnature

nature Flux
units = "Wb";
access = Phi;
ddt_nature = Voltage;
endnature"

Defined in “discipline.h” include file

(tools/dfII/samples/spectreHDL/include, or Appendix C)

Many others (Maneto_Motive_Force, Temperature, Power,
Position, Acceleration)

4/7/2003 BR 10

Disciplines

• Disciplines used to bind natures with potential and flow
discipline voltage
potential Voltage;

enddiscipline

discipline current
potential Current;
enddiscipline

Discipline with single
nature called signal-flow
discipline

discipline electrical
potential Voltage;
flow Current;

enddiscipline

Discipline with multiple
natures called
conservative discipline.
Nature bound to
potential must be
different from nature
bound to flow.

Can also have an empty discipline (a wire is an empty discipline)

4/7/2003 BR 11

Discipline Compatibilty
Operations between nodes of different disciplines allowed if
potential/flow natures are the same.

From this flowchart, can connect
electrical and voltage disciplines,
electrical and current disciplines, and
voltage and current disciplines.

4/7/2003 BR 12

Branches

• Branch is a path between nodes
• Can only be declared within a module
• Currents summed at branch node

Define two different branch currents

Diode Model

3

4/7/2003 BR 13

Branches in Diode Model
module diode (a, c) ;
electrical a, c ;
branch (a, c) diode, cap ;
branch (a,a) anode;
parameter real rs = 0, is=1e-14, tf=0, cjo=0, imax=1, phi=0.7 ;

analog begin

I(diode) <+ is*($limexp((V(diode)-rs*I(anode)/$vt) – 1) ;

I(cap) <+ ddt(tf*I(diode) - 2 * cjo *
sqrt(phi * (phi * V(cap)))) ;

if (I(anode) > imax) // Checks current through port
$strobe("Warning: diode is melting!") ;

end

endmodule Branch currents summed

Special branch (port
branch), used to monitor
current through port

Thermal
voltage,
language
builtin

4/7/2003 BR 14

Special Variables

4/7/2003 BR 15

Assignments

• Procedural assignments, used to modify integer, reals
• sum = a + b

• Branch contribution statement
• V(n1,n2) <+ expr1;

• Multiple branch assignments can be applied to same node

V(n1, n2) <+ expr1;
V(n1, n2) <+ expr2;

is equivalent to:

V(n1,n2) <+ expr1 + expr2;

4/7/2003 BR 16

More on branch assignments

• Simulation of a branch assignment
– Simulator evaluates right hand expression
– Simulator adds the value of the right hand expression to any

previously retained value for the node (a summation)
– At end of simulation cycle, summed value assigned to source

branch

• If assigning a flow quantity, and previously assigned value
was a potential, then potential value is discarded (and vice-
versa)
– When a branch changes between assigned flow and potential

quantities, this is known as a switch branch.

4/7/2003 BR 17

Control Structures

• Begin/end blocks
• If /else
• Case
• Repeat Loop (loop fixed number of times)
• While/Loop (conditional loop)
• For/Loop
• Generate (similar to generate capability in VHDL but not

quite as powerful)

Details of these constructs in Verilog-A ref manual,
chapter 5.

4/7/2003 BR 18

Conservative/Signal-Flow Interface

To model a mixed conservative/signal-flow system, must have
an interface model between the two since terminals of the two
have incompatible disciplines.

Conservative
(electrical
discipline)

Physical
system

Abstract
system

Signal flow. VHDL-AMS, Verilog-
AMS supports ‘real’ type here. Verilog-
A must use single-nature discipline – do
not need interface if potential/flow
natures are same as physical system.

4

4/7/2003 BR 19

constants.h

Many constants defined in constants.h (appendix C in
verilog reference manual).

`define M_E 2.7182818284590452354
`define M_LOG2E 1.4426950408889634074
`define M_LOG10E 0.43429448190325182765
`define M_LN2 0.69314718055994530942
`define M_LN10 2.30258509299404568402
`define M_PI 3.14159265358979323846
`define M_TWO_PI 6.28318530717958647652
`define M_PI_2 1.57079632679489661923

etc… Refer to them in code via:

`M_LN2

Note the backquote in front of the constant name.
4/7/2003 BR 20

Model Example: Capacitor
module cap(p,n);
inout p,n;
electrical p,n;

parameter real c=0 from [0:inf);

analog

I(p,n) <+ c*ddt(V(p,n));

endmodule;

Electrical discipline,
bidirectional terminals.

Specifies range on
parameter

Time derivative operator, implements dv/dt

Predefined as part of the language.

4/7/2003 BR 21

Model Example: Sine Wave Generator
module V_sine_generator(out);

output out;
voltage out;

parameter real freq = 1K from (0:inf),
ampl = 1,
offset = 0;

analog
begin
V(out) <+ ampl * sin(`M_TWO_PI * freq * $realtime)

+ offset;

bound_step(0.05/freq);

end
endmodule

constant

Simulator time

Specifies maximum time between allowed
between adjacent points in simulation. Forces
simulation tracking of signals to accuracy
required by model for correct operation.

4/7/2003 BR 22

Analog Operators

• Built-in functions that operate on more than just the current
value of their arguments – they maintain internal state
– Limited Exponential function ($limexp)
– Time derivative operator (ddt)
– Time Integral operator (idt)
– Circular integrator operator (idtmod)
– Delay operator (delay)
– Transition filter (transition)
– Slew filter (slew)
– Laplace transform filters (laplace_zp, laplace_zd, laplace_np,

laplace_nd)
– Z-transform filters (zi_zp, zi_zd, zi_np, zi_nd)

4/7/2003 BR 23

Miscellaneous Functions

• $strobe (aka $display) – formatted output statement
• $pwr – specify model power consumption
• File IO

– $fopen
– $fstrobe, $fdisplay
– $fclose

• $finish – simulator exit
• $stop – simulator exit
• Can also have user-defined local functions within a module

4/7/2003 BR 24

Mechanical Model: Friction
module damper1d(n1,n2);
module spring1d(n1,n2);

inout n1,n2;
kinematic n1,n2;

parameter real k = 10 from (0:inf);
// spring constant given in n/m

parameter real l = 0.1 from (0:inf);
// length of spring in m

analog

F(n1,n2) <+ k*(Pos(n1,n2) - l);

endmodule

Newtons/meter

Kinematic discipline has
position (potential), force
(flow) natures.

Recall that a mechanical spring is akin to a resistor in
the electrical world. Spring constant is equivalent to
conductance.

