
1

3/25/2003 BR 1

Verilog RTL Modeling

• This assignment introduces you to Verilog RTL modeling
• Similar in concept to VHDL RTL, just different syntax
• Will use serial data transfer as the problem to be solved

3/25/2003 BR 2

Serial Communication

• Serial communication is as widely (or even more widely
used) than parallel communication
– Especially true if communication occurs over long wires

• Many new high speed serial communication standards
have been developed
– USB, IEEE Firewire, HyperTransport, etc.

• This lab will introduce you to some basic serial
communication concepts, namely bit-stuffing and NRZI
encoding
– These techniques are used in the USB (Universal Serial Bus)

interface.

3/25/2003 BR 3

NRZ
NRZI

Non-return to zero (NRZ) -
normal data transitions.

NRZ Inverted (NRZI, not a
good description, is not
inverse of NRZ). A
transition for every zero bit.

Strings of zeros means lots of
transitions. Strings of ‘1’s
means steady line.

3/25/2003 BR 4

Bit Stuffing – a ‘0’ is inserted after every six consecutive ‘1’s in
order to ensure a signal transition so that receiver clock can remain
synchronized to the bit stream.

Bit stuffing done automatically by sending logic. Sync pattern
starts data transmission and is seven ‘0’s followed by a ‘1’.

3/25/2003 BR 5

Bit Stuff
(insert a ‘0’
after every 6
consecutive
‘1’s)

NRZ
serial
stream

NRZI
Encoding

NRZI
Decode

NRZ
bitstuffed
serial
stream

NRZI
bitstuffed
serial
stream

NRZ
bitstuffed
serial
stream

Bit DeStuff
(remove a ‘0’
after every 6
consecutive
‘1’s)

NRZ
serial
stream

(sin) (sout_nrz) (sout_nrzi)

Bytes send LSB first!!!

A serial bit stream

3/25/2003 BR 6

Shift
Reg bit stuff and

nrzi encode8

FSM

soutdin

d_rdy
start
reset
clk
serclk

serializer module (ser.v)
Complete serializer/deserializer in tbser.v

bit destuff
and nrzi
decode

Shift
Reg

dout

8

deserializer module (deser.v)

FSM

sin

2

3/25/2003 BR 7

The Task

• You are to design the serializer module (in file ser.v) using
Verilog RTL
– May need several modules within file ser.v, top level module is

called serializer and has the interface shown
– Your ser.v code must be synthesizeable

• I have designed deserializer module (in file deser.v) and
testbench (tbser.v).
– Testbench connects the serializer/deserializer modules together
– Also sends 32 bytes to serializer/deserializer for testing purposes

3/25/2003 BR 8

Serializer Module

• Should wait until start is asserted
• Send value on din serially over sout
• Request new value on din by asserting d_rdy

– In testbench, there is a clock cycle latency between assertion of
d_rdy and a new din value being provided

• Continually send serial data until reset is asserted.
• Main clock is signal clk. The serial clock is serclk which

has 1 clock pulse for every 4 pulses on clk.
– New serial data should be provided for every pulse on serclk.
– Both clk and serclk provided by testbench.

3/25/2003 BR 9

Zip Archive serial.zip

• Contains directory serial, which contains files tbser.v,
ser.v, deser.v .

• Also contains a Modelsim golden waveform called
serial_vsim.wlf and command file serial_wave.do To view
this waveform do:
– qhsim –view serial_vsim.wlf –do “do serial_wave.do”
– Shows all signals in tbser.v from golden simulation.

• The file qhsim_gold_log.txt contains the golden output
– Testbench just sends 32 bytes to serializer/deserializer
– Each time a new byte comes out of the deserializer, it is printed to

screen.
• Synopsys script file ser.script for testing if verilog code is

synthesizeable.
– Your synthesized gate level code must produce same result as RTL

code

3/25/2003 BR 10

DESerializer Operation
Understanding the DESerializer operation may help with
implementation of the serializer.

NRZI
Decode NRZ

bitstuffed
serial
stream

Bit DeStuff
(remove a ‘0’
after every 6
consecutive
‘1’s) NRZ

serial
stream

NRZI
bitstuffed
serial
stream

Shift
Register

Dout[7..0]
Output

Register 88

3-bit
counter

load
Load asserted every 8 bits
shifted in so that shift
register value transferred to
output reg.

3/25/2003 BR 11

NRZI Decode

D Q
LD

sin_nrzi sin_nrz

en

equal
D Q
LD

en

sin_nrzi

en

S0

S1

S2

S3

S4

D Q
newbit

S0 is reset state. Sin_nrzi = 0 is start
of transmission (idle state is ‘1’, a ‘0’
bit is always transmitted first).

en is asserted every four clocks
(know that serial clock is ¼ of clock
frequency).

newbit is
asserted
when
sin_nrz has
valid data.

If last bit = this bit, then
output a ‘1’ else ‘0’.

3/25/2003 BR 12

module desnrz (sout,newbit,clk, reset,sin);

output sout,newbit;
input clk,reset,sin;

reg l_sin,en,sout,newbit;
reg [2:0] state,nstate;

`define S0 'b000
`define S1 'b001
`define S2 'b010
`define S3 'b011
`define S4 'b100
`define S5 'b101
`define S6 'b110
`define S7 'b111

State definitions

reg declaration required
anytime a signal is assigned a
value from an assignment
statement in a procedure
block.

Does not imply that a
‘register’ will be synthesized

Finite State Machine for desnrz

3

3/25/2003 BR 13

always @(posedge clk) begin
if (reset) begin

state <= `S0;
l_sin <= 1;
sout <= 1;
end
else state <= nstate;

newbit <= 0;
if (en) begin
if (l_sin != sin) sout = 0;

else sout <= 1;
newbit <= 1;
l_sin <= sin;

end
end

Procedural block for FSM state storage Triggered on rising edge of
clock, so outputs will have
a rising-edge DFF
synthesized.

Synchronous reset

l_sin is last serial input. If last serial input not equal
to current serial input, then was a ‘0’ value. If the last
serial bit is equal to current bit, then a ‘1’. The newbit
asserted to indicate a valid serial output bit.

en asserted by FSM
logic every 4 clocks
since we know serial
clock is ¼ clock freq.

3/25/2003 BR 14

always @(state or sin) begin
nstate = state;
en = 0;
case (state)
`S0: // wait for start edge

if (!sin) nstate = `S1;
`S1: begin

en = 1; nstate = `S2;
end

`S2: nstate = `S3;
`S3: nstate = `S4;
`S4: nstate = `S1;

default: nstate = `S0;
endcase
end
endmodule

Combinational Block Triggered on any changes to
state or sin

Default output assignments
(en negated, stay in same
state)

Need begin/end if more
than one statement in
block.

3/25/2003 BR 15

Bit De-stuffing
S0

1

S1

newbit

sin

0

1 0

1

newbit

sin

0

1 0

1

newbit

sin

0

1 0

S2

pause

newbit 0

S6

pause asserted when six ‘1’
bits detected. The pause signal
used to halt shift register so
that the ‘0’ bit which was
stuffed is not shifted into
register.

3/25/2003 BR 16

module des_shift (dout, sin, clk, reset, newbit,pause);
output [7:0] dout;
input clk, reset, newbit,pause, sin;

reg [7:0] dout;

always @(posedge clk) begin

if (reset) dout <= 'b00000000;
else if ((newbit) && (!pause)) begin

dout[6:0] <= dout[7:1]; //right shift by 1
dout[7] <= sin;

end
end

endmodule

8-bit Shift register in deser.v

Shift occurs if newbit
available and not
destuffing (pause == 0).

Synchronous reset
Data sent LSB first so shift data
into MSB.

3/25/2003 BR 17

module descnt (dout, zero, clk, reset, newbit,pause);
output [2:0] dout;
output zero;
input clk,reset,newbit,pause;

reg [2:0] dout;
reg zero;

assign zero = ~dout[2] & ~dout[1] & ~dout[0] ;

always @(posedge clk) begin
if (reset) dout <= 'b000;
else if ((newbit) && (!pause)) dout <= dout + 1;

end

endmodule

3-bit Counter register in deser.v

Increment counter if newbit available
and not destuffing.

Assert zero when counter
value = 0. This output used
to control loading of output
register.

3/25/2003 BR 18

module outreg (q,d,r,clk,ld);

output [7:0] q;
input [7:0] d;
input r,clk,ld;

reg [7:0] q;

always @(posedge clk) begin

if (ld) q <= d;
if (r) q <= 'h00;

end

endmodule

8-bit Register in deser.v

Note that synchronous reset takes
precedence over synchronous load.

Hex formatting.

4

3/25/2003 BR 19

module deserializer (dout, clk, reset, sin);
output [7:0] dout;
input clk, reset, sin;

wire [2:0] bitcnt;
wire [7:0] sdout;
wire [7:0] dout;

dff u_dff (lat_sin,sin,reset,clk);
desnrz u_desnrz (sout_nrz,newbit, clk, reset,lat_sin);
destuff u_destuff (sout,pause,newbit,sout_nrz,reset,clk);
descnt u_descnt (bitcnt, zero, clk, reset, newbit,pause);
des_shift u_shift (sdout, sout, clk, reset, newbit,pause);
outreg u_outreg (dout,sdout,reset,clk,zero);

endmodule

Deserializer module – connects other modules together

Must explicitly declare the
widths of any wires whose
width is not 1. (default
width is 1).

3/25/2003 BR 20

Asynchronous vs Synchronous Inputs

reg q;

always @(posedge clk) begin
if (r) q <= 0;
else q <= d;

Synchronous reset,
high true

reg q;

always @(posedge clk or posedge r)
begin
if (r) then q <= 0;
else q <= d;
end

Asynchronous reset –,
high true.

Need ‘posedge’ on ‘r’
because Verilog syntax
requires if any signals
are edge-triggered in
event list, all signals
must be edge-
triggered.

Style suggested by C. Cummings, SNUG 2002

3/25/2003 BR 21

tbser module in tbser.v

module tbser;
reg clk,reset,start;
wire [7:0] din;
wire [4:0] addr;
wire [7:0] dout;
reg [7:0] last_dout;

initial begin
clk = 0;
reset = 1;
start = 0;
last_dout = 'h00;

end

Declaration of wires
with non-default widths

Any block with ‘initial’
keyword only executed
once.

3/25/2003 BR 22

tbser module in tbser.v cont.

always #(200/2) clk = ~clk;

serclkgen u_serclk (serclk, clk, reset);
serializer u_ser (sout, d_rdy, din, clk,serclk,reset, start);
deserializer u_des (dout, clk, reset, sout);
cnt5 u_cnt5 (addr, clk, reset, d_rdy);
rom u_rom (din, addr);

Clock generation

‘serclkgen’ module generates serial clock.

‘rom’, ‘cnt5’ used to generate 8-bit input values to serializer
module (‘rom’ provides data values, ‘cnt5’ is 5-bit counter
that provides address to ‘rom’ module. ‘cnt5’ incremented
anytime that ‘d_rdy’ is asserted.

3/25/2003 BR 23

tbser module in tbser.v cont.

always @(posedge clk) begin : trace
if (serclk == 1) begin
if (last_dout != dout) $display("Dout = %h ",dout);
last_dout = dout;
end

end

trace block prints dout value anytime it changes and
serclk is asserted.

Can name blocks
(not required)

Print in hex format.

3/25/2003 BR 24

tbser module in tbser.v cont.

always begin : stim
@(posedge clk);
@(posedge clk);
reset = 0;
@(posedge clk);
start = 1;
@(posedge clk);
start = 0;
while (addr == 0) begin
@(posedge clk);

end
while (addr != 0) begin
@(posedge clk);

end
while (addr == 0) begin
@(posedge clk);

end
$finish;
end

stim block provide stimulus for
input signals.

Note use of @(posedge clk) --
waits until rising edge before
continuing.

