

First Try – call this architecture 'behv'		
Write a single process whose sensitivity list contains the 'a' vector. Process triggered any time a change occurs on any bit in the 'a' vector.		
Declare two boolean variable arrays within the process called v_one, v_zero.		
When process triggers, loop through signal list		
if value of signal is '1', set corresponding entry in v_one variable to TRUE.		
If value of signal is '0', set corresponding entry in v_zero array to TRUE.		
2/7/2002 BR 3	3	

architecture genl of monitor is signal v_one: std_logic_vector (N. signal v_zero: std_logic_vector () FILE OutFile : text; begin PGEN: for i in 0 to N-1 generate process (a(i))	-1 downto 0); N-1 downto 0); Signals for keeping information, visible to all processes. Shared variables not available
begin	until VHDL93
<pre>if (a(i) = '1') then v_one(i) <= '1'; elsif (a(i) = '0') then v_zero(i) <= '1'; end if; end process; end generate PGEN;</pre>	GENERATE block creates a process for each bit of 'a'
process(log) variable init : boolean := FALSE; VARIABLE LL: line;	
2/7/2002 BR	6

<pre>architecture gen2 of monitor signal v_one: std_logic_ve signal v_zero: std_logic_v FILE OutFile : text;</pre>	: is actor (N-1 downto 0); vector (N-1 downto 0);	
<pre>Begin PGEN:for i in 0 to N-1 ger v_one(i) <= '1' when (a v_zero(i) <= '1' when (end generate PGEN;</pre>	herate A(i)='l') else v_one(i); (A(i)='l') else v_zero(i);	
This accomplishes the same resu	ult as previous slide.	
2/7/2002 BR		7

# of signals, #	1	Approaches (Execution tim	ne)	
of events	behv (single process, local variables)	gen1 (signals, generated processes)	Gen2 (signals, generated concurrent assign)	gen3 (shared variables, generated processes)	
2000, 500	3.9 s	4.0 s	4.1 s	3.7 s	
20000, 500	5.1 s	22.0 s	22.3 s	4.4 s	
acreasing number of signals by 10x has large impact on ENERATE approaches which use signals. Why?					

behv (single process, local variables) gen1 (signals, processes) Gen2 (signals, generated processes) gen (signals, generated concurrent assign) gen (signals, generated concurrent assign) gen (signals, gen processes) 20000, 500 5.1 s 22.0 s 22.3 s 22.3 s	en3 nared riables, nerated
20000, 5.1 s 22.0 s 22.3 s	ocesses)
	4.4 s
20000, 50.3 s 22.8 s 22.6 s	5.1 s
20000, 50000 50.3 s 22.8 s 22.6 s Issing large number of signals, and increasing events by 100 pusses little change in CENER ATE approaches 100 pusses little change in CENER ATE approaches	5.1 s

Which Method has best execution time? Test for different # of signals, #number of events. Times measured on 450 Mhz Sun server # of signals, # Approaches (Execution time)				
of events	behv (single process, local variables)	gen1 (signals, generated processes)	Gen2 (signals, generated concurrent assign)	gen3 (shared variables, generated processes)
2000, 500	3.9 s	4.0 s	4.1 s	3.7 s
2000, 50000	10.5 s	5.8 s	5.8 s	4.2 s
GENERATE approaches, large effect on single process approach.				

	Performance Data	
 Obv be p – e Why num – N – 1 n Fast the e s 	ious from code that the single process approach would oor for large numbers of event or signals xecution time affected by both # of signals and # of events. y are the first two GENERATE approaches sensitive to ber of signals and not number of events? Aost of the execution time is actually initialization time 'akes time to allocate and initialize data structures for such a large number of signals. est execution time and best scaling performance was GENERATE approach that used shared variables A simple message – if you can substitute a variable for a signal do o – it will save both execution time and memory usage.	
2/7/2002	BR	12

Representing Databook Timing Information

- Assume we must create VHDL models for Commercial
 Off-The-Shelf (COTS) parts
- How can the model represent databook timing values?
 Speed grade information (-15, -20, -25)
 - Different temperature/voltage ranges (commercial vs military)
- Different parts from same family share similar timing parameters
 - All SRAMs have Taa (access time from address)
 - But ... PLDs do not have this timing parameter
- Will use a hierarchy of packages to create a structure for representing databook timing

2/7/2002

BR

ram ce oe tv - Package for RAMs with single CE PACKAGE ram ce oe tv IS Defines timing parameters for TYPE model_times IS RECORD this SRAM family -- read cycle tre : time; -- read cycle time -- address to data valid taa : time; -data hold from address change toha time; : -- ce low to data valid tace time; tdoe : time; -- oe low to data valid tlzoe : time; -- oe low to low Z time; -- oe high to high Z thzoe : -- ce low to low Z tlzce time; -- ce high to high Z thzce time; **.** . Lots more like this, all record fields END RECORD; not shown. END ram_ce_oe_tv; 2/7/2002 BR 16

Package Hierarchy

- Create a base timing package that will define some parameters common to all data sheets

 time vector types, operating point type
- Create a timing package that represents the timing parameters shared by all members of a particular family
 ie. 'ram ce oe tv' package is shared by all SRAMs that have both a single chip enable and an output enable (separate IO)
- Finally, create a timing view package that contains the timing data for a particular part
- Must have some method for selecting a particular set of time values in the configuration
 - Would also like to be able to override individual timing values if desired

2/7/2002

```
BR
```

14

13

cy7b134 Entity			
ENTITY cy7b134 IS	2		
<pre>GENERIC (operating_point : operating_point_ speed_grade : speed_grade_type EIA 567 Boolean Generics mgeneration : Boolean := TRUE; vageneration : Boolean := TRUE; EIA 567 Wire delay generics for WD_al, WD_acr : wd_vector; WD_io_l,WD_io_r : wd_vector; </pre>	<pre>type := nominal; := speed_grade_default; report timing violations generate X's inputs</pre>		
<pre>WD_rw_l, WD_rw_r : Time := 0 ns; WD_oe_l, WD_oe_r : Time := 0 ns; WD_oe_l, WD_oe_r : Time := 0 ns; - ETA 567 load delay generics for LD_io_l,LD_io_r : ld_vector; override generics trc : Time := Time'LEFT taa : Time := Time'LEFT toha : Time := Time'LEFT tace : Time := Time'LEFT</pre>	Not all generics shown. These used for overriding individual timings		
) 2/7/2002 BR	19		

