
1

2/7/2002 BR 1

VHDL Model Efficiency
• Need an entity that can be plugged into any model

hierarchy for signal monitoring
• Initial goal will be simple – at end of simulation, report:

– Signals that are never assigned (still a ‘U’)
– Signals that are never assigned a ‘1’ value
– Signals that are never assigned a ‘0’ value

• For first condition (‘U’ signals), only have to examine
signal list at end of simulation

• For other two conditions, not sufficient to examine final
signal values
– If a signal value is a ‘1’, it may or may not have been assigned a

‘0’ during the simulation
– If a signal value is a ‘0’, it may or may not have been assigned a

’1’ during simulation

2/7/2002 BR 2

monitor VHDL Entity

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;

entity monitor is
generic (
FName : String := "./monitor.log";
N : integer := 1
);

port (
a : in std_logic_vector(N-1 downto 0);
log : in std_logic

);

end monitor;

Output file

List of signals
to monitor

When transitions from ‘0’
to ‘1’, print signal info to
log file.

Need for monitor to be efficient because signal list may be
very large (thousands to 10’s of thousands of signals)

2/7/2002 BR 3

First Try – call this architecture ‘behv’

Write a single process whose sensitivity list contains the ‘a’
vector. Process triggered any time a change occurs on any bit
in the ‘a’ vector.

Declare two boolean variable arrays within the process called
v_one, v_zero.

When process triggers, loop through signal list

if value of signal is ‘1’, set corresponding entry in v_one
variable to TRUE.

If value of signal is ‘0’, set corresponding entry in v_zero
array to TRUE.

2/7/2002 BR 4

architecture behv of monitor is

type boolv is array(natural range <>)
of Boolean;

FILE OutFile : text;

Begin
process (a,log)
variable v_one : boolv(0 to N-1);
variable v_zero : boolv(0 to N-1);
variable init : boolean := FALSE;
VARIABLE LL: line;

begin
for i in 0 to N-1 loop
if (a(i) = '1') then
v_one(i) := TRUE;

end if;
if (a(i) = '0') then
v_zero(i) := TRUE;

end if;
end loop;

Some code has been
deleted for brevity, see
zip archive for complete
listing.

Arrays for
recording ‘1’, ‘0’
assignments

Loop through ‘a’, recording
if bit has been set to ‘1’ or
‘0’.

Execution time grows by
N * number of events on ‘a’

2/7/2002 BR 5

There must be a better way

• The execution time of the previous approach grows by
N*#of events on ‘a’

• Would like to eliminate unnecessary examination of
signals within ‘a’ that did not experience an event

• Have a separate process for each bit of vector ‘a’
• Execution time would then be proportional to the number

of events on ‘a’, and not the size of ‘a’
• How do we parameterize generation of the processes??

– Use a GENERATE block!

2/7/2002 BR 6

architecture gen1 of monitor is
signal v_one: std_logic_vector (N-1 downto 0);
signal v_zero: std_logic_vector (N-1 downto 0);
FILE OutFile : text;

begin
PGEN:

for i in 0 to N-1 generate
process (a(i))
begin
if (a(i) = '1') then
v_one(i) <= '1';
elsif (a(i) = '0') then
v_zero(i) <= '1';
end if;

end process;
end generate PGEN;

process(log)
variable init : boolean := FALSE;

VARIABLE LL: line;
………….

Signals for keeping
information, visible to
all processes. Shared
variables not available
until VHDL93

GENERATE block
creates a process for
each bit of ‘a’

2

2/7/2002 BR 7

architecture gen2 of monitor is
signal v_one: std_logic_vector (N-1 downto 0);
signal v_zero: std_logic_vector (N-1 downto 0);
FILE OutFile : text;

Begin
PGEN:for i in 0 to N-1 generate

v_one(i) <= '1' when (a(i)='1') else v_one(i);
v_zero(i) <= '1' when (a(i)='1') else v_zero(i);

end generate PGEN;

This accomplishes the same result as previous slide.

2/7/2002 BR 8

architecture gen3 of monitor is
type boolv is array(natural range <>) of boolean;
shared variable v_one: boolv (N-1 downto 0);
shared variable v_zero: boolv (N-1 downto 0);
FILE OutFile : text;

procedure set_value(signal x :std_logic; ind :natural) is
begin

if (x = '1') then v_one(ind) := TRUE;
elsif (x = '0') then v_zero(ind) := TRUE;
end if;

end;
begin
PGEN: for i in 0 to N-1 generate
process (a(i))
begin
set_value(a(i),i);

end process;
end generate PGEN;

Use shared variables, use a
procedure call to set the
value of the shared variables
(cannot assign a variable
outside of a process,
procedure or function)

2/7/2002 BR 9

Which Method has best execution time?
Test for different # of signals, #number of events. Times
measured on 450 Mhz Sun server

3.7 s4.1 s4.0 s3.9 s2000,
500

4.2 s5.8 s5.8 s10.5 s2000,
50000

gen3
(shared
variables,
generated
processes)

Gen2
(signals,
generated
concurrent
assign)

gen1
(signals,
generated
processes)

behv
(single
process, local
variables)

Approaches (Execution time)# of signals, #
of events

Increasing number of events by 100x has small impact on
GENERATE approaches, large effect on single process approach.

2/7/2002 BR 10

More Data

3.7 s4.1 s4.0 s3.9 s2000,
500

4.4 s22.3 s22.0 s5.1 s20000,
500

gen3
(shared
variables,
generated
processes)

Gen2
(signals,
generated
concurrent
assign)

gen1
(signals,
generated
processes)

behv
(single
process, local
variables)

Approaches (Execution time)# of signals, #
of events

Increasing number of signals by 10x has large impact on
GENERATE approaches which use signals. Why?……..

2/7/2002 BR 11

One more comparison

4.4 s22.3 s22.0 s5.1 s20000,
500

5.1 s22.6 s22.8 s50.3 s20000,
50000

gen3
(shared
variables,
generated
processes)

Gen2
(signals,
generated
concurrent
assign)

gen1
(signals,
generated
processes)

behv
(single
process, local
variables)

Approaches (Execution time)# of signals, #
of events

Using large number of signals, and increasing events by 100x
causes little change in GENERATE approaches

2/7/2002 BR 12

Performance Data

• Obvious from code that the single process approach would
be poor for large numbers of event or signals
– execution time affected by both # of signals and # of events.

• Why are the first two GENERATE approaches sensitive to
number of signals and not number of events?
– Most of the execution time is actually initialization time
– Takes time to allocate and initialize data structures for such a large

number of signals.
• Fastest execution time and best scaling performance was

the GENERATE approach that used shared variables
– A simple message – if you can substitute a variable for a signal do

so – it will save both execution time and memory usage.

3

2/7/2002 BR 13

Representing Databook Timing Information

• Assume we must create VHDL models for Commercial
Off-The-Shelf (COTS) parts

• How can the model represent databook timing values?
– Speed grade information (-15, -20, -25)
– Different temperature/voltage ranges (commercial vs military)

• Different parts from same family share similar timing
parameters
– All SRAMs have Taa (access time from address)
– But… PLDs do not have this timing parameter

• Will use a hierarchy of packages to create a structure for
representing databook timing

2/7/2002 BR 14

Package Hierarchy

• Create a base timing package that will define some
parameters common to all data sheets
– time_vector types, operating_point_type

• Create a timing package that represents the timing
parameters shared by all members of a particular family
– ie. ‘ram_ce_oe_tv’ package is shared by all SRAMs that have

both a single chip enable and an output enable (separate IO)
• Finally, create a timing view package that contains the

timing data for a particular part
• Must have some method for selecting a particular set of

time values in the configuration
– Would also like to be able to override individual timing values if

desired

2/7/2002 BR 15

EIA567tv Package

• EIA567 was an attempt to create a standard VHDL package
for representing component timing information

• Was never widely accepted
• A few interesting type definitions – we only used the

operating point type from this package in the Cypress VHDL
models

Type operating_point_type is

(minimum, nominal, maximum);

2/7/2002 BR 16

ram_ce_oe_tv - Package for RAMs with single CE
PACKAGE ram_ce_oe_tv IS
TYPE model_times IS
RECORD
-- read cycle
trc : time; -- read cycle time
taa : time; -- address to data valid
toha : time; -- data hold from address change
tace : time; -- ce low to data valid
tdoe : time; -- oe low to data valid
tlzoe : time; -- oe low to low Z
thzoe : time; -- oe high to high Z
tlzce : time; -- ce low to low Z
thzce : time; -- ce high to high Z
……….

………..

END RECORD;

END ram_ce_oe_tv;

Lots more like this, all record fields
not shown.

Defines timing parameters for
this SRAM family

2/7/2002 BR 17

cy7b134_tv Package – contained timing information
for a particular part (a dual port SRAM)

PACKAGE cy7b134_tv IS

TYPE speed_grade_type is (cy7b134_com_20, cy7b134_com_25,
cy7b134_com_35, cy7b134_debug);

TYPE op_array IS ARRAY (operating_point_type) of model_times;

TYPE eds IS ARRAY (speed_grade_type) of op_array;

CONSTANT times : eds;

CONSTANT speed_grade_default: speed_grade_type;

END cy7b134_tv;

2D array of
records indexed
by operating
point, speed
grade.Lookup array that contains all

timing data, values specified
in package body

Package header

2/7/2002 BR 18

cy7b134_tv Package body - contains timing data
PACKAGE BODY cy7b134_tv IS
CONSTANT speed_grade_default: speed_grade_type := cy7b134_com_25;
CONSTANT times : eds :=
(cy7b134_com_20 =>
(minimum => (trc => 20 ns, taa => 0 ns, toha => 3 ns, tace => 0 ns,

tdoe => 0 ns, tlzoe => 3 ns, thzoe => 0 ns, tlzce => 3 ns,
thzce => 0 ns, tpu => 0 ns, tpd => 0 ns, twc => 20 ns,
tsce => 15 ns, taw => 15 ns, tha => 2 ns, tsa => 0 ns,
tpwe => 15 ns, tsd => 13 ns, thd => 0 ns, thzwe => 0 ns,
tlzwe => 3 ns, twdd => 0 ns, tddd => 0 ns),

nominal => (trc => 20 ns, taa => 20 ns, toha => 3 ns, tace => 20 ns,
tdoe => 13 ns, tlzoe => 3 ns, thzoe => 13 ns, tlzce => 3 ns,
thzce => 13 ns, tpu => 0 ns, tpd => 20 ns, twc => 20 ns,
tsce => 15 ns, taw => 15 ns, tha => 2 ns, tsa => 0 ns,
tpwe => 15 ns, tsd => 13 ns, thd => 0 ns, thzwe => 13 ns,
tlzwe => 3 ns, twdd => 40 ns, tddd => 30 ns),

maximum => (trc => 20 ns, taa => 20 ns, toha => 3 ns, tace => 20 ns,
tdoe => 13 ns, tlzoe => 3 ns, thzoe => 13 ns, tlzce => 3 ns,
thzce => 13 ns, tpu => 0 ns, tpd => 20 ns, twc => 20 ns,
tsce => 15 ns, taw => 15 ns, tha => 2 ns, tsa => 0 ns,
tpwe => 15 ns, tsd => 13 ns, thd => 0 ns, thzwe => 13 ns,
tlzwe => 3 ns, twdd => 40 ns, tddd => 30 ns)

),
cy7b134_com_25 =>
(minimum => (trc => 25 ns, taa => 0 ns, toha => 3 ns, tace => 0 ns, Etc..

4

2/7/2002 BR 19

cy7b134 Entity
ENTITY cy7b134 IS

GENERIC (
operating_point : operating_point_type := nominal;
speed_grade : speed_grade_type:= speed_grade_default;

-- EIA 567 Boolean Generics
mgeneration : Boolean := TRUE; -- report timing violations
xgeneration : Boolean := TRUE; -- generate X's
-- EIA 567 Wire delay generics for inputs
WD_a_l, WD_a_r : wd_vector;
WD_io_l,WD_io_r : wd_vector;
WD_rw_l, WD_rw_r : Time := 0 ns;
WD_oe_l, WD_oe_r : Time := 0 ns;
WD_ce_l, WD_ce_r : Time := 0 ns;
-- EIA 567 load delay generics for ouputs
LD_io_l,LD_io_r : ld_vector;
-- override generics
trc : Time := Time'LEFT;
taa : Time := Time'LEFT;
toha : Time := Time'LEFT;
tace : Time := Time'LEFT;

……
)

Not all generics
shown.

These used for
overriding individual
timings

2/7/2002 BR 20

PORT (
a_l : IN Std_Logic_Vector(AddressWidth-1 DOWNTO 0);
a_r : IN Std_Logic_Vector(AddressWidth-1 DOWNTO 0);
io_l : INOUT Std_Logic_Vector(DataWidth-1 DOWNTO 0);
io_r : INOUT Std_Logic_Vector(DataWidth-1 DOWNTO 0);
rw_l : IN Std_Logic;
rw_r : IN Std_Logic;
oe_l : IN Std_Logic;
oe_r : IN Std_Logic;
ce_l : IN Std_Logic;
ce_r : IN Std_Logic

);

CONSTANT t: model_times := (
trc => ChooseDelay(trc,times(speed_grade)(operating_point).trc),
taa => ChooseDelay(taa,times(speed_grade)(operating_point).taa),
toha => ChooseDelay(toha,times(speed_grade)(operating_point).toha),
tace => ChooseDelay(tace,times(speed_grade)(operating_point).tace),

cy7b134 Entity (continued)

Constant declared in Entity,
used by architecture code for all
timing data

This function returns the individual generic parameter if it is not
equal to TIME’LEFT (I.e, a non-default value has been
specified). This allows override of databook value.

