
Spring 2002 – Test 1 Solutions

SSN: _____________________ (no names please)

You may only use the VHDL Language Reference Manual

1. (10 pts) Write a VHDL process that determines if the high pulse width of signal CLK is less than
MIN_PW_HIGH (CLK is std_logic type).

process(clk)
 begin
 if (clk = ‘0’) then
 assert (clk’delayed’last_event >= MIN_PW_HIGH))
 report “High Pulse width violation.”
 severity error;
 end if;
 end process;

2. (10 pts)Write a VHDL process that checks if the hold time for signal D is less than

MIN_HOLD_TIME on the falling edge of signal CLK. Both CLK and D are std_logic types.

process (D) -- must trigger on D events
 begin
 if (clk = ‘0’) then
 assert (clk’last_event >= MIN_HOLD_TIME)
 report “Hold time violation.”
 severity error;
 end if;
 end process;

3. (10 pts) Use a set of concurrent statements and std_logic drive strengths to model the following

diagram:

A

TA

Y
G1

G2

G3
B

All signals are std_logic type.

G1: When tristate control is ‘1’, then output follows
input else high impedance output.

G2 is a weak drive inverter and can be overdriven by
G1.

All gate delays are 2 ns.

A

TA

Y
G1

G2

G3
B

All signals are std_logic type.

G1: When tristate control is ‘1’, then output follows
input else high impedance output.

G2 is a weak drive inverter and can be overdriven by
G1.

All gate delays are 2 ns.

 Signal B : std_logic := ‘Z’;

---- G1 driver
B <= A after 2 ns when (TA = ‘1’) else ‘Z’ after 2 ns;

--- G3 driver
Y <= not (B) after 2 ns;

--- G2 driver
B <= ‘H’after 2 ns when (Y = ‘0’ or Y = ‘L’) else
 ‘L’ after 2 ns;

4. (10 pts) Write a single process that will generate a quadrature clock signal (clk_quad) from a clock

signal called ‘clk’. A quadrature clock is one that is offset from the base clock by a ¼ clock cycle
(see below). The following is known: the clock duty cycle is 50% and it will not change for the
duration of the simulation. However, the clock period is not known. Your quadrature clock can
have 1 or 2 clock cycles of startup time before it begins operation.

5. (10 pts) Draw the ‘A’ waveform the results from the following code. Assume clock is a 50% duty
cycle waveform with a period of 8 ns and initial value of ‘0’. Stop your drawing when the
waveform repeats.

 Signal A : std_logic:= ‘0’;

 A <= transport clk after 2 ns;
 A <= transport clk after 3 ns;

clk

Clk_quad

clk

Clk_quad

clk

0 4 8 12

A_2ns

A_3ns

A final

X X

clk

0 4 8 12

A_2ns

A_3ns

A final

X X

A has two drivers, so must resolve the
two drivers.

 process (clk)
 begin
 clk_quad <= transport clk after clk’delayed’last_event/2 ;
 end process;

6. (5 pts) For the following code, give the final variable of shared variable ‘test’. Explain your

answer:

shared variable test: integer := 0;

process

 begin
 test := 5;
 end process;

 process
 begin
 test := 10;
 end process;

7. (5 pts) For the code below, what is the value of variable count at the time indicated by the dotted
line?

 Process (clk)
 Variable count : integer:= 0;

 Begin
 Count := count + 1;
 End process;

8. (10 pts) A student from Ole Miss wrote the following clock generator. Draw the waveform that is

generated for two clock cycles.
 Signal clk: std_logic := ‘0’;

 Process
 Clk <= ‘0’;
 Wait for (now + 10 ns);
 Clk <= ‘1’;
 Wait for (now + 10 ns);
 End process;

clk

0 ns

clk

0 ns

There are multiple problems with this code. First,
neither process has a wait statement so either process
will cause an infinite loop. Which process is executed
first is simulator dependent, so you cannot predict what
the value of test will be.

The final value will be 6. The process
is executed at time = 0 ns so count is
incremented at that point (= 1), then
incremented for each event (each
clock edge) for a final value of 6.

clk

0 ns

10 + 10 ns

10 + 30 ns

10 + 70 ns

10 ns 30 ns 70 ns 150 ns

clk

0 ns

10 + 30 ns

10 + 70 ns

10 ns 30 ns 70 ns 150 ns

9. (10 pts) The PLD model we studied read a JEDEC file that determined the operation of the model.
When was the PLD file read? Compilation, Simulation or Elaboration time? What was the
advantage of writing the model in this manner?

10. (10 pts) Write a process that will open a file called ‘output.dat’ and records each time that a
std_logic signal ‘a’ changes to an ‘X’ value from any other value and the duration of time that it
remains an ‘X’. Assume that the ‘a’ signal can only have the values ‘0’, ‘1’, or ‘X’. The format
of each line is:

 Previous_value Time_of_change_to_X duration

 File fp: text

 Process (a)
 Variable ll: line;
 Variable init: Boolean;

 begin
 if (init = FALSE) then
 file_open(fp, string’(“output.dat”),WRITE_MODE);
 init = TRUE:
 end if;
 if (a = ‘X’) then
 write(ll,a); -- write old value
 write(ll,now); -- time of change to X
 end if;
 if ((a=’0’ or a=’1’) and (a’last_value = ‘X’) then
 write(ll,a’delayed’last_event); -- write duration of ‘X’ value
 writeln(fp,ll);
 deallocate(ll);
 end if;
 end process;

Elaboration time – the model memory resources and execution time was proportional to the
amount of resources actually used in the PLD.

11. (10 pts) For the system below, model the Tri-state buffer and NOT gates as single concurrent

statements and the capacitive hold as a single process. The capacitive hold will output either a ‘L’
or ‘H’ to hold the previous driven ‘0’ or ‘1’ provided by the tri-state buffer. If the tri-state buffer
remains off for DECAY_TIME, the signal B should float to a ‘Z’ value.

Capacitive
hold

A

TA

Y

When tristate control is ‘1’, then output follows input
else high impedance output. All gate delays 2 ns.

B

Capacitive
hold

A

TA

Y

When tristate control is ‘1’, then output follows input
else high impedance output. All gate delays 2 ns.

B

 Signal B : std_logic := ‘Z’;
 Signal A, TA, Y :std_logic;

--tri state buffer

B <= A after 2 ns when (TA = ‘1’) else ‘Z’ after 2 ns;
-- inverter
Y <= not (B) after 2 ns;

Process (B) -- capacitive hold process
 Variable init: boolean;
 Begin
 If (init = FALSE) then
 B <= ‘Z’; initial drive value for this process
 Init = TRUE;
 End if;
 If (B’last_value = ‘1’) then
 B <= ‘H’, ‘Z’ after DECAY_TIME;
 End if;
 If (B’last_value = ‘0’) then
 B <= ‘L’, ‘Z’ after DECAY_TIME;
 End if;
 End process;

Problem #11 Simulation

1. B driven ‘1’ by TSB

2. TSB off, ‘1’ becomes ‘H’

3. After decay_time, ‘H’ becomes ‘Z’

4. Y becomes ‘X’ because of ‘Z’ input.

