
Summer 1999 – Test 1 Solutions

1. (10 pts) Write a process that will function as a clock doubler. The sensitivity list should trigger on a

signal named ‘clk’ and the process should drive a signal called ‘clk2x’. You can assume that the input
signal is of type ‘std_logic’ and that it will only have values ‘1’ and ‘0’. You can assume that the
frequency of clk will not change over time and that the duty cycle of clk is 50%. You DO NOT know
the frequency of ‘clk’ ahead of time. The frequency of clk2x should be twice that of clk, and have a
50% duty cycle.

process (clk)

variable half_per: time;
begin
 clk2x <= transport '1', transport '0' after clk'delayed'last_event/2;
end process;

2. (15 pts) a. Draw the waveform generated by the following code:
 architecture A of E
 begin
 signal a: std_logic = ‘Z’;
 process
 begin

 a <= transport ‘L’ after 5 ns;
 a <= transport ‘1’ after 10 ns;
 a <= transport ‘H’ after 2 ns;
 end process;
 end E;

b. Draw the waveform generated by the following code:

architecture A of E
 begin
 signal a: std_logic = ‘Z’;

 a <= transport ‘L’ after 5 ns;
 a <= transport ‘1’ after 10 ns;
 a <= transport ‘H’ after 2 ns;

 end E;

3. (10 pts) Write a process that triggers on two signals, ‘clk’ and ‘a’. Both are std_logic type and will

only be set to the values ‘1’ or ‘0’. Have the process print the setup and hold times of signal 'a'
referenced to the rising edge of the 'clk' signal.

 process (clk, a)
 variable setup, hold: time;
 begin
 if (clk'event and clk = '1') then
 -- rising edge
 setup := a'last_event;
 assert false
 report "Setup time is: " & To_String(setup) & LF;
 end if;

 if (a'event and clk = '1') then
 hold := clk'last_event;
 assert false
 report "Hold time is: " & To_String(hold) & LF;
 end if;

 end process;

4. (15 pts) Explain what each of the following attributes return (you MUST give the data type that is

returned as well as explain what it is).

a. 'transaction - returns a 'boolean signal' that toggles every time an assignment is made to the
original signal.

b. 'event - returns a boolean type; true if a change in signal value has occurred.
c. 'last_event - returns a 'time' type; returns the amount of time from NOW until the last change in

signal (NOW - time of last event)

d. 'range - returns a range which has two integer endpoints; gives the high and low indicies of a
vectored signal.

e. 'active - returns true if an assignment has been made to this signal (if a transaction has occurred).

at this delta time point.
5. (50 pts) Answer the following short answer questions:
a. Given an std_logic_vector, write a VHDL code fragment that will return the number of bits in the

vector.
 variable k: integer

 k := signal_name'length;

b. Given a std_logic_vector, write a VHDL code fragment that will examine each bit of the vector and

replace U, W, ‘-‘ values with an ‘X’.

 for i in signal_name'range loop
 if (signal_name(i) = 'U' or signal_name(i) = 'W' or signal_name(i)= '-') then
 signal_name(i) = 'X';
 end loop;

c. If the current time is ’10 ns’, what gets entered on the time queue (value and time) for the following
assignment:

 a <= transport ‘0’;

 10 ns + 1delta, '0'

e. If an initial value is not specified for a signal or variable of ANY datatype, what is the default initial
value? leftmost value

f. What types of statements (sequential or concurrent) can be placed within a GENERATE block?

 concurrent

g. What is an advantage of placing a CONSTANT assignment within a package body?

 A Constant within a package body breaks dependencies between the package and any entities that
use this constant (the constant value is assigned at elaboration time). If you change the constant, you do
NOT have to recompile the entities that use this package. If the constant is declared within the header,
then changing the constant will force you to recompile the entities that use the package.

h. Why would we want a function to be executed at ELABORATION time instead of during simulation?

(Hint: we looked at an example in class where this was necessary).

If you are building some structure via GENERATE blocks and the structure is parameterized based upon
some data in an external file. The GENERATE blocks are expanded at elaboration time so you need the
external data read in at elaboration time. This is how the PLD models were written (the Jedec file contents
parameterized the structure that was built during elaboration).

i. What is meant by function/procedure overloading? Give an example of a standard VHDL function or

procedure that is overloaded.

When multiple versions of a function/procedure exists; with each version differentiated only by its
argument list. The WRITE, READ functions in the textio package are overloaded.

j. Explain what will happen in the following code; explain what happens on the time queue, and what

happens within the simulator. Give the final value of 'a'.

signal a : std_logic;

process (a)

 begin

 a <= '1';
 if (a = '1') then
 wait;
 end if;
 a <= '0';

 end if;

The '1' assignment to 'a' will not take place until the process is exited; so the 'if' test will fail. The last
assignment to 'a' (the '0' value) will take precedence, so the final value of 'a' will be a '0'. The process will
trigger two times (once when 'a' is initially 'U', once at 0ns + 1 delta when a is '0').

k. What is the purpose of VHDL configurations?
Allows the user to specify what architecture to be used with an entity, also allows specification of generic
values.

6. (15 pts) Assume that I am trying to model a single wire network using the ethernet protocol. An

ethernet cable can have multiple drivers, and uses a packet collision detection method in which a driver
listens to the packet it just sent - if the packet is garbled, then the driver assumes a 'collision' occurred
and the driver waits a random amount of time (greater than a packet send time) before trying to send a
packet of data again.

If you were using VHDL to model this system, what sort of approach would you use for the data types? (a
packet can hold lots of information such as number of bits in the packet, checksum fields, data fields, etc).
Explain how you might implement the collision detection feature of this system.

I would use a RECORD type to define the various packet fields within an ethernet packet. The record type
could be something like:

 TYPE packet IS
 RECORD
 checksum: integer;
 numbits: integer;
 sender_address: integer;
 recv_address : integer;
 collision : boolean; -- indicates if a collision has occurred.
 END RECORD;

I would make the 'packet' data type a RESOLVED data type since there will be multiple drivers on the
ethernet cable; the resolution function will be responsible for detecting packet collisions within a
particular time interval. If a collision occurs, then the resolution function will place a packet on the bus
indicating a collision; the hosts on the ethernet will be responsible for listening and detecting this collision
and performing a randomized exponential backoff algorithm.

