
P1: IBC
CM042A-03 ACM-TRANSACTION January 18, 2002 10:37

Prefetching for Improved Bus Wrapper
Performance in Cores

ROMAN LYSECKY
University of California, Riverside
and
FRANK VAHID
University of California, Riverside, and University of California, Irvine

Reuse of cores can reduce design time for systems-on-a-chip. Such reuse is dependent on being
able to easily interface a core to any bus. To enable such interfacing, many propose separating
a core’s interface from its internals by using a bus wrapper. However, this separation can lead
to a performance penalty when reading a core’s internal registers. In this paper, we introduce
prefetching, which is analogous to caching, as a technique to reduce or eliminate this performance
penalty, involving a tradeoff with power and size. We describe the prefetching technique, classify
different types of registers, describe our initial prefetching architectures and heuristics for certain
classes of registers, and highlight experiments demonstrating the performance improvements and
size/power tradeoffs. We further introduce a technique for automatically designing a prefetch unit
that satisfies user-imposed register-access constraints. The technique benefits from mapping the
prefetching problem to the well-known real-time process scheduling problem. We then extend the
technique to allow user-specified register interdependencies, using a Petri net model, resulting in
even more efficient prefetch schedules.

Categories and Subject Descriptors: B.4.3 [Input/Output and Data Communications]: Intercon-
nections (subsystems)—Interfaces; B.5.0 [Register-Transfer-Level Implementation]: General;
C.5.4 [Computer System Implementation]: VLSI System

General Terms: Design, Performance

Additional Key Words and Phrases: Bus wrapper, cores, design reuse, intellectual property, inter-
facing, on-chip bus, PVCI, system-on-a-chip, VSIA

1. INTRODUCTION

Silicon capacity continues to increase faster than the ability for designers to use
that silicon, resulting in the well-known productivity gap [Semiconductor In-
dustry Association 1999]. Many people propose extensive reuse of pre-designed

This work was supported by the National Science Foundation under grant Nos. CCR-9811164
and CCR-9876006, and is part of the Dalton project at the University of California, Riverside
(http://www.cs.ucr.edu/∼dalton).
Authors’ addresses: Roman Lysecky and Frank Vahid, Department of Computer Science and En-
gineering, University of California, Riverside, Riverside, CA 92521; e-mail: rlysecky@cs.ucr.edu;
vahid@cs.ucr.edu.
Permission to make digital/hard copy of part or all of this work for personal or classroom use is
granted without fee provided that the copies are not made or distributed for profit or commercial
advantage, the copyright notice, the title of the publication, and its date appear, and notice is given
that copying is by permission of ACM, Inc. To copy otherwise, to republish, to post on servers, or to
redistribute to lists, requires prior specific permission and/or a fee.
C© 2002 ACM 1084-4309/02/0100–0001 $5.00

ACM Transactions on Design Automation of Electronic Systems, Vol. 7, No. 1, January 2002, Pages 1–33.

P1: IBC
CM042A-03 ACM-TRANSACTION January 18, 2002 10:37

2 • Lysecky and Vahid

intellectual property cores to reduce this gap [Virtual Socket Interface Asso-
ciation 1997a], where typical cores include microprocessors, microcontrollers,
digital signal processors, bus interfaces, and numerous peripheral components.
In response, several commercial libraries of cores have evolved in recent years,
e.g., Mentor Graphics [n.d.]. Soft cores come in the form of synthesizable code,
while hard cores come in the form of technology-specific layouts.

A key aspect of a core’s marketability, soft or hard, is its ability to be easily
integrated into a system-on-a-chip (SOC). This is especially true for periph-
eral cores, since they must be usable in many systems in order to be profitable
for the core designer. Unfortunately, standardizing on one or two on-chip SOC
buses, which certainly would ease integration, does not appear to be possible
because of the diversity of constraints present in embedded systems, as rec-
ognized for example by the Virtual Socket Interface Alliance (VSIA) [Virtual
Socket Interface Association 1998]. Thus, to achieve such ease of integration,
many have proposed designing cores with their interface behavior implemented
in a bus wrapper, separated from the core’s internal behavior [Rowson and
Sangiovanni-Vincentelli 1997; Vahid and Tauro 1997; Virtual Socket Interface
Association 1998]. This separation means that changes necessary to adapt a
core to a particular bus would be limited to the bus wrapper.

In Section 3 of this paper, we analyze the impact of using a bus wrapper
on the design metrics of performance, power, and size. We analyze the impact
on those metrics of using the VSIA interface between a bus wrapper and a
peripheral core’s internals versus using a customized interface. We show that
the modularity achieved with a bus wrapper often comes with a performance
penalty. For example, reading a core’s internal register from the bus may require
extra cycles to first read the register data into the bus wrapper before the data
can be output to the bus.

We therefore propose a solution to this performance penalty, called prefetch-
ing. Briefly, prefetching is analogous to caching, wherein we store local copies
of registers inside a bus wrapper so that a register read results in outputting
of this local copy, thus eliminating extra cycles on a read. As with caching,
prefetching schemes must strive to maximize the hit ratio. Prefetching requires
appropriate bus wrapper architecture design as well as heuristics that maxi-
mize the hit/miss ratio. In Section 4, we describe the idea of prefetching, classify
common core registers, describe prefetching architectures and simple heuristics
for common classes, and provide results demonstrating the impact on perfor-
mance, power, and size. In Section 5, we describe a technique for automatically
designing a prefetch unit (PFU) that meets user-provided constraints on maxi-
mum allowable latency and data-age for each register. The key design problem
is to schedule the prefetches over the core’s internal bus such that the con-
straints are met. We observe that the prefetching problem could be mapped to
the extensively researched problem of real-time process scheduling, and thus we
apply powerful heuristics and analysis techniques for that problem to solve the
prefetching problem. In Section 6, we consider the case where the core designer
is able to provide additional information about the registers, in particular, their
update interdependencies, which we can use to build an even better prefetch
schedule. In this case, we use Petri nets as a model for specifying a core’s register

ACM Transactions on Design Automation of Electronic Systems, Vol. 7, No. 1, January 2002.

P1: IBC
CM042A-03 ACM-TRANSACTION January 18, 2002 10:37

Prefetching for Improved Bus Wrapper Performance • 3

update dependencies, and we also provide a heuristic for scheduling prefetches
based on that model.

2. RELATED WORK

2.1 Interfacing

Much work has been done on interfacing with cores, but to our knowledge none
of the literature includes the idea of prefetching. The bulk of interfacing work
has dealt with the automatic synthesis of logic to interface with a bus, synthesis
of the bus itself, or defining a standard bus protocol. The VSIA has proposed
the Virtual Core Interface (VCI), which defines a bus protocol for connecting a
bus wrapper to the core internals. Motorola has also released its IP Interface
(IPI) that provides a standard similar to the VCI. These various techniques
and standards all strive to reduce system design time when designs become too
large for the available software tools to handle efficiently. We now discuss these
approaches.

2.1.1 Automatic Synthesis of Bus Interface Logic. Chou et al. [1995] pro-
posed a method for automatically generating the software and hardware needed
for a specified interface. Their approach starts with defining the bandwidth
and timing constraints of the desired interface. You must also describe certain
aspects of the processor, such as I/O pins available, interrupt handling mecha-
nisms, and the system bus. All of these aspects must be described in great de-
tail. From this information, they generated the hardware and software needed
to interface between the processors and cores in the system. Their technique
will enable a designer to change the interface requirements of the system with
relative ease.

Madisetti and Shen [1997] proposed a different technique for generating in-
terface logic. Their approach starts in the early phases of SOC design when the
design specification is being developed. As part of design specification, they pro-
posed using a specialized language that can define both functional and timing
characteristics to describe the interface. Using this approach, they argued that
design flaws can be easily found at the early stages of design and corrected.
The system designer can then use the interface description to automatically
synthesize the necessary interface logic.

2.1.2 Bus Synthesis. Instead of generating the interface logic for a bus,
Gasteier and Glesner proposed an approach to automatically generate a
communication topology consisting of possibly several buses. Their approach
starts with a set of processes that communicate via simple send and receive com-
mands. Then, from a simulation phase, data is gathered relating to the sends
and receives from each device. This information is used to generate a cost-
effective communication topology using buses without arbitration. Although
this approach allows for efficiently choosing a bus structure for a set of pro-
cesses, it does not attempt to increase the retargetability of cores.

2.1.3 Standard Bus Protocols. Another method for decreasing design time
is to use a standard bus protocol, such as that proposed by Vercauteren et al.

ACM Transactions on Design Automation of Electronic Systems, Vol. 7, No. 1, January 2002.

P1: IBC
CM042A-03 ACM-TRANSACTION January 18, 2002 10:37

4 • Lysecky and Vahid

[1996]. They proposed a cosynthesis technique that utilizes a parameterizable
architecture with a defined communication protocol. By defining a standard
bus protocol, IP cores can be designed to use this protocol and thus facilitate an
easy integration into the system architecture. Coupled with other hardware and
software strategies, Vercauteren et al.’s proposed technique can significantly
reduce design time. However, as previously stated, the success of a standard
protocol requires that all core designers adhere to this bus. Due to the multitude
of proprietary bus protocols, the VSIA determined that a standard bus protocol
would most likely not be adopted.

2.1.4 VSIA’s Virtual Component Interface. In an effort to promote the use
of bus wrappers, the VSIA has proposed a standard bus protocol that interfaces
between a bus wrapper and the core internals. The goal of this proposal is to
facilitate quick retargeting of a core from one system to another. If a standard
internal bus is used, a core can be retargeted to any bus simply by providing
an appropriate bus wrapper. The main selling point of this technique is that no
changes need to be made to the core itself. The VSIA has currently proposed two
version of its VCI, namely the Basic Virtual Component Interface (BVCI), and
the Peripheral Virtual Component Interface (PVCI) [Virtual Socket Interface
Association 1997b]. VSIA is also planning to provide a more powerful proto-
col designed for high-performance systems. The upcoming protocol will be the
Advanced Virtual Component Interface (AVCI).

The PVCI is the simplest protocol defined by VSIA. It is a simple point-to-
point protocol consisting of two unidirectional buses with a simple two-way
handshake. The PVCI is designed to be used with peripheral on-chip buses and
for point-to-point connections between cores. One of the key aspects of the PVCI
is that it is easy to implement due to its simple communication scheme. The
BVCI is a superset of the PVCI and is targeted at on-chip buses and point-to-
point connections between cores. The BVCI adds features such as DMA trans-
fers, interrupt handling, etc. The BVCI was designed with the intent to provide
a bus protocol that can handle most on-chip bus interfacing needs.

2.1.5 Motorola’s IP Interface. Since the release of the VSIA’s Virtual Com-
ponent Interface, Motorola has also announced its own interfacing standard.
Like the VCI, Motorola’s IPI [Motorola 1999] provides a standard bus protocol
for interfacing between cores. However, Motorola uses the concept of Bus Inter-
face Gasket instead of bus wrapper. Similar in nature to the VSIA’s proposal,
Motorola also defines varying levels to its protocol. However, the IPI does so by
defining different communication lines. For example, the SkyBlue-Line defines
the interface between a peripheral bus interface gasket and a core. In fact, the
SkyBlue-Line defined by the IPI is very much similar to the PVCI. In order to
handle more complex interfacing needs, the IPI defines additional lines, e.g.,
the DarkBlue-Line defines a DMA interface between a core and a gasket.

2.1.6 Rapid Prototyping. Many groups have focused on rapid prototyping
approaches. There are different approaches that have been taken in this aspect.
Philips has developed the Velocity platform, which is a large predesigned SOC
[Philips Semiconductors 1999]. The system includes a processor, memory, cache,

ACM Transactions on Design Automation of Electronic Systems, Vol. 7, No. 1, January 2002.

P1: IBC
CM042A-03 ACM-TRANSACTION January 18, 2002 10:37

Prefetching for Improved Bus Wrapper Performance • 5

and common peripheral components. Users of the system need only deactivate
the components that are not being used and add any custom logic to a large
Field Programmable Gate Array (FPGA).

Another approach uses a high-level language to speed to design flow. CoWare
produces a product called N2C, which stands for “napkin-to-chip” [CoWare
1999]. This product is designed such that systems designers can start with
a detailed description of the system using C/C++. This specification is then
used throughout the design flow to verify the functionality of the design at each
step.

Other systems are targeted at specific applications such as Internet connec-
tivity. Metaflow has designed the Implosion SOC Platform, which combines an
SOC with on-chip Internet capabilities [Metaflow 1999]. At the heart of the
Implosion platform is an ARM processor. The system also comes with a myriad
of common peripheral components, e.g., Ethernet, DMA controller, interrupt
controller, etc. The goal of this system is to enable designers to rapidly create
designs that can access information via the Internet.

Fleischmann et al. [1999], Clement et al. [1999], and Kuhn et al. [1997] have
each proposed systems in which a high-level language (C, C++, or Java) is used
to model and test a system in various stages of design. These techniques rely
on the speed and efficiency of the high-level languages to decrease verification
through a combination of codesign techniques, cosimulation, and cosynthesis.

2.2 Heterogeneous Systems

Some researchers have argued that a design paradigm shift caused by the avail-
ability of transistors on a single die will lead computer architectures in a new
direction [Kozyrakis and Patterson 1998]. The flexibility provided by SOC de-
signs has led way to heterogeneous systems composed of many different types of
computing elements. V Meerbergen et al. [1998] and Rabaey et al. [1997] have
presented how these systems can be used efficiently. Their respective techniques
provide design methodologies aimed at increasing the productivity of designers
using these systems.

2.3 Prefetching

Prefetching has been used in the area of microprocessor and memory system
design. In fact, prefetching has been studied in great detail in these areas.
However, to our knowledge no work on prefetching has dealt with peripheral
cores. Prefetching is used in memory systems to reduce the miss rate of caches
Patterson and Hennessy [1990]. When data is read or written, the address being
accessed is checked to see if the desired data block is present in the cache. If the
data is not found in the cache, the appropriate block is fetched from memory. The
block is then placed into the cache by replacing a block in the cache according to
the replacement policy. Prefetching works by reading a block of memory either
into the cache itself or into a prefetch buffer by predicting which block will be
needed shortly based upon the current address being accessed.

Another type of prefetching in this area is compiler-controlled prefetching.
In this prefetching technique, a compiler inserts prefetch instructions that will

ACM Transactions on Design Automation of Electronic Systems, Vol. 7, No. 1, January 2002.

P1: IBC
CM042A-03 ACM-TRANSACTION January 18, 2002 10:37

6 • Lysecky and Vahid

Fig. 1. Core interface options: (a) no BW, (b) BW without prefetching, (c) BW with prefetching.

Fig. 2. Interface option timing: (a) no BW, (b) BW without prefetching, (c) BW with prefetching.

load data into the cache while not blocking the processor from executing other
instructions. The goal of compiler-controlled prefetching is to overlap the exe-
cution of the processor with the fetching of data, thus reducing the miss rate.

3. BUS WRAPPERS

3.1 Overview

Separating a core’s interface behavior and internal behavior can lead to per-
formance penalties. For example, consider the core architectures shown in
Figures 1(a), 1(b) and 1(c), showing a core with no bus wrapper, a core with a bus
wrapper (BW) but without prefetching, and a core with a BW with prefetching,
respectively. The latter two architectures are similar to that being proposed
by the VSIA. The BW interfaces with the system bus, whose protocol may be
arbitrarily complex, include a variety of features like arbitration. The BW also
interfaces with the core internals, over a core internal bus; this bus is typi-
cally extremely simple, implementing a straightforward data transfer. It is this
internal bus that the VSI On-Chip Bus group is standardizing. Without a BW,
a read of a core’s internal register from the on-chip bus may take as little as
two cycles, as shown in Figure 2(a). With a BW, the read of a core’s internal
register may require four cycles, two from the internal module to the BW, and

ACM Transactions on Design Automation of Electronic Systems, Vol. 7, No. 1, January 2002.

P1: IBC
CM042A-03 ACM-TRANSACTION January 18, 2002 10:37

Prefetching for Improved Bus Wrapper Performance • 7

Fig. 3. PVCI’s location in a system-on-a-chip.

two from the BW to the bus. Thus, a read may require extra cycles compared
with a core whose interface and internal behavior are combined.

However, a core with its interface behavior separated into a bus wrapper
is believed to be much easier to retarget to different buses than a core whose
interface behavior is integrated with its internal behavior. By standardizing
the interface between the core’s internals and the bus wrapper, retargeting of
a core may become easier.

3.2 PVCI

After deciding that a single on-chip bus standard was unlikely, the VSIA devel-
oped the VCI [Virtual Socket Interface Association 1997b]. The VCI is a pro-
posed standard interface between a core’s internals and a core’s bus wrapper,
as illustrated in Figure 3. Retargeting a core using VCI will involve roughly the
same changes to the bus wrapper, since the VCI ensures that the changes are
limited to the wrapper and not the internals, and since a bus provider can even
provide bus wrapper templates between the bus and the VCI. The VCI is a far
simpler protocol than a typical bus protocol, since it is a point-to-point transfer
protocol. In contrast, a bus protocol may involve more advanced features, such
as arbitration, data multiplexing, pipelining, and so on. Thus, standardizing
the VCI is far simpler than standardizing a bus protocol.

The PVCI is a simplified version of the VCI, specifically intended for periph-
erals. PVCI cores would reside on a lower-speed peripheral bus as shown in
Figure 3, and thus would not need some of the high-speed features of the VCI,
e.g., packet chaining. The general structure of the PVCI is shown in Figure 4.
It consists of two unidirectional buses. One bus leads from the wrapper to the
internals. The wrapper sets the read line to indicate a read or a write, and sets
the address lines with a valid address. For a write, it also sets the wdata lines. It
asserts the val line to actually initiate the read or write. The wrapper must hold
all these lines constant until the internals assert the ack line. For a write, this
means that the internals have captured the write data. For a read, this means
that the internals have put the read data on the rdata bus. The transaction

ACM Transactions on Design Automation of Electronic Systems, Vol. 7, No. 1, January 2002.

P1: IBC
CM042A-03 ACM-TRANSACTION January 18, 2002 10:37

8 • Lysecky and Vahid

Fig. 4. PVCI’s general structure.

is completed on the next rising clock edge. A fast internals module can keep
ack asserted continuously to provide for fast transfers, similar in spirit to the
synchronous wait protocol [Vahid and Givargis 1999].

3.3 Experiments with Bus Wrappers

We sought to evaluate the impact of a wrapper and of PVCI using a simple
peripheral bus. We used a bus with a two-phase handshake protocol to en-
sure that the communication was as fast as possible for a given peripheral. As
previously demonstrated, using a wrapper results in a two-cycle overhead per
read as compared with an integrated core.

Figure 2(a) illustrates the timing of a read cycle of this peripheral bus for an
integrated core. The peripheral bus master (in our case, the bridge) places an
address on addr and then strobes rd. The peripheral responds by placing data
on data and strobing rdy as early as once cycle after receiving the rd strobe.
Thus, the total read cycle could be as little as two clock cycles.

Figure 2(b) illustrates the read cycle of the bus for a core using a bus wrapper.
After the bus master places the address and strobes rd, the wrapper responds
by translating this read request into a read request over the internal bus. This
translation involves translating the address to one appropriate for the core and
then placing that address on wrp addr, and then asserting wrp read. The core’s
internals respond by placing data on wrp data and then asserting wrp rdy. The
wrapper receives the data, puts it on the peripheral bus, and strobes rdy.

A write cycle need not incur any performance overhead in the wrapper ver-
sions. When the bus master sets the addresses and strobes the appropriate
ready line, the wrapper can respond immediately by capturing the data and
strobing the ready line, just like an integrated core will do. The wrapper can
then proceed to write the captured data to the core internals, while the bus
master proceeds with other activities.

The example we evaluated was a simple version of a digital camera system,
illustrated in Figure 5. The camera system consists of a (simplified) MIPS mi-
croprocessor, BIOS, and memory, all on a system bus, with a bridge from the
system bus to a peripheral bus (ISA) having a CCD (charge-coupled device)

ACM Transactions on Design Automation of Electronic Systems, Vol. 7, No. 1, January 2002.

P1: IBC
CM042A-03 ACM-TRANSACTION January 18, 2002 10:37

Prefetching for Improved Bus Wrapper Performance • 9

Fig. 5. Digital camera example system.

preprocessor and a simple CODEC (compressor/decompressor). The two-level
bus structure is in accord with the hierarchical bus concept described in [Virtual
Socket Interface Association 1997a]. The camera is written in register-transfer
level synthesizable VHDL, and synthesizes to about 100,000 cells. We used the
Synopsys Design Compiler as well as the Synopsys power analysis tools to eval-
uate different design metrics. Power and performance were measured for the
processing of one frame.

We made changes to the CCD preprocessor and CODEC cores since they
represent the peripherals on the peripheral bus. These cores are used heavily
while processing a frame. We created three versions of the camera system:

(1) Integrated: The CCD preprocessor and CODEC cores were written with
the interface behavior inlined into the internal behavior of the core. Thus,
synthesis generates one entity for each core.

(2) Non-PVCI wrapper: The CCD preprocessor and CODEC cores were writ-
ten with the interface behavior separated into a wrapper. Thus, synthesis
generates two connected entities for the core. The interface between these
two wrapper and internal entities consisted of a single bidirectional bus, a
strobe control line and a read/write control line, and however many address
lines were necessary to distinguish among internal registers.

(3) PVCI wrapper: Same as the previous version, except that the interface
between the wrapper and internal entities was PVCI.

The non-PVCI wrapper version was created for another purpose, well before
the PVCI standard was developed and with no knowledge that the version
would be used in these experiments. Thus, its structure was developed to be as
simple as possible.

Table I summarizes size, performance, and power results. Size is reported
in equivalent NAND gates, time in nanoseconds, and power in milliwatts. The
size overhead when using a bus-wrapper (non-PVCI) compared to the integrated
version was roughly 1500 gates per core. This overhead comes from extra control

ACM Transactions on Design Automation of Electronic Systems, Vol. 7, No. 1, January 2002.

P1: IBC
CM042A-03 ACM-TRANSACTION January 18, 2002 10:37

10 • Lysecky and Vahid

Table I. Comparison of Interface Versions Using a Custom Bus

Size of Size of Power for Total time I/O Time
Version Ex. Wrapper Internals 1 frame (1 frame) (1 frame)

Integrated
CCD 0 34320

7.90 75175 7760CODEC 0 1926
Non-PVCI CCD 1661 34556

8.11 79055 15520Wrapper CODEC 1674 1904
PVCI CCD 1439 33978

7.98 79055 15520Wrapper CODEC 1434 1588

and registers. In the integrated version, the core’s internals includes control to
interface to the peripheral bus. In the wrapper version, this control is replaced
by control for interfacing to the wrapper, so the size of the core’s internals
stays the same. However, the wrapper now must implement control for inter-
facing to the internals, and for interfacing to the peripheral bus, representing
overhead. The wrapper must also include registers whose contents are copied
to/from the internals, representing additional overhead. The reason that the
non-PVCI wrapper version shows more size overhead than the PVCI wrapper
version is because the non-PVCI version used a single bus for transfers both
two and from the core internals, whereas PVCI specifies two separate buses,
resulting in less logic but more wires. Fifteen hundred gates of size overhead
seems quite reasonable, given the continued increase of chips’ gate capacities,
and given that peripheral cores typically posses 20,000 gates or more [Mentor
Graphics n.d.].

The system power overhead was only about 1%. The extra power comes from
having to transfer items twice per access. On a write, an item must be trans-
ferred first from the bus to the wrapper, then from the wrapper to the internals.
On a read, an item must be transferred first from the internals to the wrap-
per, then from the wrapper to the bus. However, the power consumed by the
memory, system bus, and processor dominate, so the extra power due to the
wrappers is very small—even though the CCD and CODEC are heavily used
when processing a frame.

In Table I, we can see that there is a 100% increase in peripheral I/O access
time when bus wrappers are employed. This overhead is due to the use of a
wrapper, which would have occurred whether using PVCI or another wrapper.
In our experiments, the CCD was accessed 256 times per image frame, while the
CODEC was accessed a total of 128 times per frame. Because the MIPS proces-
sor executed approximately 5000 instructions per frame, the overall overhead
of the bus wrappers amounts to approximately 5%.

One difference between the non-PVCI and PVCI interface that does not ap-
pear in the results is the number of wires internal to the core. The non-PVCI
version uses a multiplexed bus, and has fewer signals (some PVCI signals were
not shown), and thus would have fewer internal wires.

Noting that our CCD and CODEC cores are relatively small and have sim-
ple interfaces, it took us 6 designer hours, excluding synthesis and simulation
time, to retarget a design from one wrapper to another, e.g., to convert the
CCD’s non-PVCI wrapper to a PVCI implementation. Synthesis time for the
CCD and CODEC was approximately 1 hour. Simulation time for capturing

ACM Transactions on Design Automation of Electronic Systems, Vol. 7, No. 1, January 2002.

P1: IBC
CM042A-03 ACM-TRANSACTION January 18, 2002 10:37

Prefetching for Improved Bus Wrapper Performance • 11

one image frame was slightly over 10 hours and power analysis was an addi-
tional 5 hours. These times were obtained by synthesizing the models down
to gates using Synopsys Design Compiler with medium mapping effort, using
the lsi−10k library supplied by Synopsys, with no area or delay constraints
specified. We used a dual 200-MHz Ultra Sparc II machine to perform both
our synthesis and simulation. Synthesis and simulation times were relatively
the same between the integrated bus implementations and those using a bus
wrapper. We note that peripheral devices capable of DMA or burst mode I/O
with interrupts will require more time to integrate into a system.

Although the use of bus wrappers improves the usefulness of a core by mak-
ing it easier to retarget to varying systems, this reusability comes at a cost. Bus
wrappers introduce both performance and power overhead, as we have demon-
strated. In tightly constrained systems where peripheral access time is critical,
this overhead is often infeasible. Ideally, the use of bus wrappers could allow
for quick retargeting of a core while not degrading performance. In the next
section, we present a technique called prefetching that effectively eliminates
the performance overhead of bus wrappers.

4. BASIC PREFETCHING

4.1 Overview

Our focus is to minimize this performance penalty in order to maximize the
usefulness of the core. We seek to do so in a manner transparent to both the
developers of the core internal behavior as well as developers of the on-chip bus.
Because of the continued exponential growth in chip capacity, we seek to gain
performance by making the tradeoff of increased size, since size constraints
continue to ease. However, we note that our approach increases the switch-
ing activity of the core, and thus we must also evaluate the increased power
consumption and seek to minimize this increase.

We focus on peripheral cores, whose registers will be read by a microprocessor
over an on-chip bus (perhaps via a bus bridge) with the idea being to minimize
the read latency experienced by the microprocessor.

The basic technique that we propose is called prefetching. Prefetching is the
technique of copying a core’s internal register data into a prefetch register in
a core’s BW, so that when a read request from the bus occurs, the core can
immediately output prefetched data without spending extra cycles to first get
the data from the core’s internal module. We use the terms hit and miss in a
manner identical for caches; a hit means that the desired data is in a prefetch
register, while a miss means that the data must first be fetched into a prefetch
register before being output to the on-chip bus. For example, Figure 2(c) shows
that prefetching a core’s internal register D into a BW register D′ results in a
system read again requiring only two cycles, rather than four.

4.2 Classification of Core Registers

We immediately recognized the need to classify common types of registers found
in peripheral cores, since different types would require different prefetching
approaches.

ACM Transactions on Design Automation of Electronic Systems, Vol. 7, No. 1, January 2002.

P1: IBC
CM042A-03 ACM-TRANSACTION January 18, 2002 10:37

12 • Lysecky and Vahid

After examining cores, primarily from the Inventra library [Mentor Graphics
n.d.], focusing on bus peripherals, serial communication, encryption, and com-
pression/decompression, we defined a register classification scheme based on
four attributes: update type, access type, notification type, and structure
type:

(1) The update type of a register describes how the register’s contents are mod-
ified. Possible types include:
(a) A static-update register is updated by the system only, where the system

is the device (or devices) that communicate with the core over the on-
chip bus. An example of a static register is a configuration register. After
the system updates the register, the register’s content does not change
until the system updates it again.

(b) A volatile-update register is updated by a source other than the system
(e.g., internally by the core or externally by the core’s environment)
at either a random or fixed rate. An example is an analog-to-digital
converter, which samples external data, converts the data to digital,
and stores the result in a register, at a fixed rate.

(c) An induced-update register is updated as a direct result of another reg-
ister within the core being updated. Thus, we associate this register
with the inducing register. Typically, an induced register is one that
provides status information.

(2) The access type of a register describes whether the system reads and/or
writes the register, with possible types including: (a) read-only access, (b)
write-only access, and (c) read/write access.

(3) The notification type describes how the system is made aware that a register
has been updated, with possible types including:
(a) An interrupt notification in which the core generates an interrupt when

the register is updated.
(b) A register-based flag notification in which the core sets a flag bit (where

that bit may be part of another register).
(c) An output flag notification in which the core has a specific output signal

that is asserted when the register is updated.
(d) No notification in which the system is not informed of updates and

simply uses the most recent register data.
(4) The structure type of the register describes the actual storage capability of

the register, with possible types including:
(a) A singly structured register is accessed through some address and is

internally implemented as one register.
(b) A queue-structured register is a register that is accessed through some

address but is internally implemented as a block of memory. A common
example is a buffer register in a UART.

(c) A block-structured register is a block of registers that can be accessed
through consecutive addresses, such as a register file or a memory.

ACM Transactions on Design Automation of Electronic Systems, Vol. 7, No. 1, January 2002.

P1: IBC
CM042A-03 ACM-TRANSACTION January 18, 2002 10:37

Prefetching for Improved Bus Wrapper Performance • 13

4.3 Commonly Occurring Register Types

For our first attempt at developing prefetching techniques for cores, we focused
on the following three commonly occurring combinations of registers in cores:

(1) Core1—configuration registers: Many cores have configurable settings con-
trolled by a set of configuration registers. A typical configuration register
has the features of static update, read/write access, no notification, and
singly structured. We refer to this example as Core1.

(2) Core 2—task registers: Many cores carry out a specific task from start to
completion and have a combination of a data input register, a data output
register, and a status register that indicates completion of the core’s task.
For example, a CODEC (compress/decompress) core typically has such a set
of registers. We looked at how to prefetch the data output and status regis-
ters. The data output register has the following features: volatile-update at
a random rate, read-only access, register-based flag notification with the flag
stored in the status register, and singly structured. The status register has
the following features: induced update by an update to the data output reg-
ister, read-only access, no notification, and singly structured. Although the
data input register will not be prefetched, its features are: volatile-update
at a random rate, write-only access, no notification, and singly structured.
We refer to this example as Core2.

(3) Core3—input-buffer registers: Many cores have a combination of a queue
data buffer that receives data and a status register that indicates the num-
ber of bytes in the buffer. A common example of such a core is a UART.
Features of the data buffer include: volatile-update at a random rate, read-
only access, register-based flag notification stored in the status register, and
queue-structured. The status register features include: induced-update by
an update to the data register, read-only access, no notification, and singly
structured. We refer to this example as Core3.

4.4 Prefetching Architectures and Heuristics

4.4.1 Architecture. In order to implement the prefetching for each of the
above listed combinations of registers, we developed architectures for bus wrap-
pers for each. Figure 6 illustrates the architecture for each of the three combi-
nations respectively. Each BW architecture has three regions:

(1) Controller: The controller’s main task is to interface with the on-chip bus. It
thus handles reads and writes from and to the core’s registers. For a write,
the controller writes the data over the core internal bus to the core internal
register. For a read, the controller outputs the appropriate prefetch register
data onto the bus; for a hit, this outputting is done immediately, while for
a miss, it is done only after forcing the prefetch unit to first read the data
from the core internals.

(2) Prefetch registers: These registers are directly connected to the on-chip bus
for fast output. Any output to the bus must pass through one of these
registers.

ACM Transactions on Design Automation of Electronic Systems, Vol. 7, No. 1, January 2002.

P1: IBC
CM042A-03 ACM-TRANSACTION January 18, 2002 10:37

14 • Lysecky and Vahid

F
ig

.6
.

B
u

s
w

ra
pp

er
ar

ch
it

ec
tu

re
an

d
ti

m
in

g
di

ag
ra

m
s

fo
r

(a
)

C
or

e1
,(

b)
C

or
e2

,a
n

d
(c

)
C

or
e3

.

ACM Transactions on Design Automation of Electronic Systems, Vol. 7, No. 1, January 2002.

P1: IBC
CM042A-03 ACM-TRANSACTION January 18, 2002 10:37

Prefetching for Improved Bus Wrapper Performance • 15

(3) Prefetch unit: The PFU implements the prefetch heuristics, and is respon-
sible for reading data from the core internals to the prefetch registers. Its
goal is to maximize hits.

The architecture for the Core1 situation is shown in Figure 6(a), showing one
register D and its corresponding prefetch register D′. Since D is only updated by
the on-chip bus, no prefetch unit is needed; instead, we can write to D′ whenever
we write to D. Such a lack of a PFU is an exception to the normal situation.
Figure 6(b) shows the architecture for the Core2 situation. The data output
register DO and status register S both have prefetch registers in the BW, but
the data input register DI does not since it is never read by the on-chip bus. The
PFU carries out its prefetch heuristic (see next section), unless the controller
asserts the “writing” line, in which case the PFU suspends prefetching so that
the controller may write to DI over the core internal bus. Figure 6(c) shows the
architecture for the Core3 example, which has no write-access registers and
hence does not include the bus between the controller and the core internal bus.

4.4.2 Heuristics. We applied the following prefetch heuristics within each
core’s bus wrapper:

Core1: Upon a system write to the data register D, simultaneously write the
data into the prefetched data register D′. This assumes that a write to the data
register will occur prior to a read from the register.

Core2: After the system writes to the data input register DI, we read the
core’s internal status register S into the prefetched status register S′. If the
status indicates completion, we read the core’s internal data output register
DO into the prefetched data-output register DO′. We repeat this process.

Core3: We continuously read the core’s internal status register S into the
prefetched status register S′ until the status indicates the buffer is no longer
empty. We then read the core’s data register D into the prefetched data register
D′. While waiting for the system to read the data, we continuously read the core’s
internal status register into the prefetched status register, thereby providing
the most current status information. When the data is read by the system,
depending on whether the buffer is empty, we either read the next data item
from the core or repeat the process.

Figure 6 shows timing diagrams for the three cores with a BW and prefetch-
ing. In all three cores, the read latency for each core with a BW and prefetching
was equal to the latency of that core without a BW, thus eliminating the per-
formance penalty.

Note that a BW’s architecture and heuristic are dependent on the core
internals. This is acceptable since the core developer builds the BW. The BW
controller’s bus interface is not, however, dependent on the core internals, as
desired.

4.5 Experiments

We implemented cores representing the three earlier common examples, in
order to evaluate performance, power, and size tradeoffs achievable through

ACM Transactions on Design Automation of Electronic Systems, Vol. 7, No. 1, January 2002.

P1: IBC
CM042A-03 ACM-TRANSACTION January 18, 2002 10:37

16 • Lysecky and Vahid

Table II. Impact of Prefetching on Several Cores

Metric Core1 Core2 Core3
Size w/o BW (gates) 1080 2638 10571
Size w/BW w/o PF (gates) 2669 4234 11506
Size w/BW w/PF (gates) 3066 6172 13146
Performance w/o BW (ns) 6895 5515 2865
Performance w/BW w/o PF (ns) 9835 8515 4305
Performance w/BW w/PF (ns) 6895 5545 2875
Power w/o BW (microwatts) 1365 480 2016
Power w/BW w/o PF (microwatts) 1399 616 1521
Power w/BW w/PF (microwatts) 1422 560 2229
Energy w/o BW (nJ) 9.41 2.65 5.77
Energy w/BW w/o PF (nJ) 13.76 5.25 6.55
Energy w/BW w/PF (nJ) 9.81 3.11 6.41

prefetching. Results are summarized in Table II. All three cores were written as
soft cores in register-transfer-level behavioral VHDL. The three cores required
136, 220, and 226 lines of VHDL, respectively. We synthesized the cores using
Synopsys Design Compiler. Performance, average power, and energy metrics
were measured using Synopsys analysis tools, using a suite of core test vectors
for each core. It is important to note that these cores have simple internal
behavior and were used for experimentation purposes only. Although these
examples are small, because the PFU unit is independent of the core internals
our approach can be applied to larger examples as well.

In all three cores, when prefetching was added to the BW’s, any performance
penalty was effectively eliminated. In Core2 and Core3, there was a trivial one-
time 30-ns and 10-ns overhead associated with the initial time required to start
and restart the prefetching process for the particular prefetch heuristics.

The addition of a BW to cores adds size overhead to the design, but size con-
straints continue to relax as chip capacities continue their exponential growth.
In the three cores described above, there was an average increase in the size
of each core by 1352 gates. The large percentage increase in size for Core1 and
Core2 was due to the fact that these cores were unusually small to begin with
since they had only simple internal behavior, having only 1000 or 2000 gates;
more typical cores would have closer to 10,000 or 20,000 gates, so the percentage
increase caused by the few thousand extra gates would be much smaller.

In order for prefetching to be a viable solution to our problem, power and
energy consumption must also be acceptable. Power is a function of the amount
of switching in the core, while energy is a function of both the switching and
the total execution time. BWs without prefetching caused both an increase in
power (due to additional internal transfers to the BW) and an increase in overall
energy consumption (due to longer execution time) in all three cores. Compared
to BWs without prefetching, BWs with prefetching may increase or decrease
power depending on the prefetch heuristic and particular application. For ex-
ample, in Core1 and Core3, there was an increase in power due to the constant
activity of the prefetch unit, but in Core2, there was a decrease in power due to
the periods of time during which the prefetch unit was idle. However, in all three
cores, the use of prefetching in the BW decreased energy consumption over the

ACM Transactions on Design Automation of Electronic Systems, Vol. 7, No. 1, January 2002.

P1: IBC
CM042A-03 ACM-TRANSACTION January 18, 2002 10:37

Prefetching for Improved Bus Wrapper Performance • 17

Table III. Impact of Prefetching on Digital Camera Performance

Cycles w/o Cycles w/
Reads prefetching prefetching

CCD—Status 3 12 6
CCD—Data 256 1024 512
CODEC—Status 256 1024 512
CODEC—Data 257 1028 514
Total for 2 cores 772 3088 1544
Digital Camera 6,224 4,680
Peripheral I/O Access
Digital Camera Processor 42,392 42,392
Execution
Digital Camera 48,616 47,072

Table IV. Impact of Prefetching on Digital Camera Power/Energy

No BW BW w/o prefetching BW w/prefetching
Power, mW 95.4 98.1 98.1
Energy, µJ 44.9 47.7 46.2

BW without prefetching because of reduced execution time. In addition, the
increase in energy consumption relative to the core without a bus wrapper was
fairly small.

To further evaluate the usefulness of prefetching, we analyzed a digital
camera as shown in Figure 5. We initially had implemented the CCD and
CODEC cores using BWs without prefetching. We therefore modified them to
use prefetching, and compared the two versions of the digital camera system.
Table III provides the number of cycles for reading status and data registers
for the two cores to capture one picture frame. The number of cycles required
for these cores with prefetching was half of the number of cycles required
without prefetching. The improvement in performance for reads from the CCD
and CODEC was 50%. The overall improvement in performance for the digital
camera was over 1500 cycles just by adding prefetching to these two cores, out
of a total of about 47,000 cycles to capture a picture frame. The prefetching
performance increase of the digital camera was directly related to the ratio of
I/O access to processor computation. Because the digital camera spends 78% of
execution time performing computation and only 12% performing I/O access,
prefetching did not have a large impact on overall performance. However,
the increase in performance for peripheral I/O access was 25%. Therefore, for
a design that is more I/O intensive, one would expect a greater percentage
performance increase. Furthermore, if the processor was pipelined, the number
of cycles required for program execution would decrease, and the percentage
of time required for I/O access would increase. Thus, one would again expect a
greater percentage performance increase from prefetching. Adding prefetching
to other cores would of course result in even further reductions. The power
and energy penalties are shown in Table IV. We see that, in this example,
prefetching is able to eliminate any performance overhead associated with
keeping interface and internals separated in a core.

Prefetching enables elimination of the performance penalty while fully sup-
porting the idea of a VSI standard for the internal bus between the BW and

ACM Transactions on Design Automation of Electronic Systems, Vol. 7, No. 1, January 2002.

P1: IBC
CM042A-03 ACM-TRANSACTION January 18, 2002 10:37

18 • Lysecky and Vahid

core internals. It can also be varied to tradeoff performance with size and power;
ideally, a future tool would synthesize a BW satisfying the power, performance,
and size constraints given by the user of a core.

5. “REAL-TIME" PREFETCHING

5.1 Overview

One of the drawbacks to the prefetching technique described above is that the
prefetch unit was manually designed and created. We desired to also investigate
an automatic solution to designing a prefetch unit. The bus wrapper in our
automated approach has an identical architecture to our previous bus wrapper
with prefetching. However, we now redefine the task of the prefetch unit (PFU).
The prefetch unit is responsible for keeping the prefetch registers as up-to-date
as possible, by prefetching the core’s internal registers over the internal bus,
when the internal bus is not being used for a write by the controller, i.e., during
internal bus idle cycles. Only one register can be read from the core internals
at a time.

We assume we are given a list of the core’s readable registers, which must be
prefetched. We also assume that the bus wrapper can accommodate one copy
of each such register. Each register in the list is annotated with two important
read-access constraints:

—Register age constraint: This constraint represents the number of cycles old
that data may be when read. In other words, it represents the period during
which the prefetch register must be updated at least once. An age constraint
of 0 means that the data must be the most recent data, which in turn means
that the data must come directly from the core and hence prefetching is
not allowed, since prefetched data is necessarily at least one cycle old. A
constraint of 0 also means that the access-time constraint must be at least
four cycles.

—Register access-time constraint: This constraint represents the maximum
number of cycles that a read access may take. The minimum is two, in which
case the register must be prefetched. An access-time constraint greater than
2 denotes that additional cycles may be tolerated.

We wish to design a PFU that reads the core internal registers into the prefetch
registers using a schedule that satisfies the age and access-time constraints on
those registers. Note that certain registers may be prefetched more frequently
than others if this is required to satisfy differing register access constraints.

The tradeoff of prefetching is performance improvement at the expense of size
and power. Our main goal is performance improvement, but we should ensure
that size and power do not grow more than an acceptable amount. Future work
may include optimizing a cost function of performance, size, and power.

For example, Figure 7 shows a core with three registers, A, B, and C. We
assume that registers A and B are independent registers that are read-only,
and updated randomly by the core internals. Assume that A and B have reg-
ister age constraints of four and six cycles, respectively. We might use a naive
prefetching heuristic that prefetches on every idle cycle, reading A 60% and

ACM Transactions on Design Automation of Electronic Systems, Vol. 7, No. 1, January 2002.

P1: IBC
CM042A-03 ACM-TRANSACTION January 18, 2002 10:37

Prefetching for Improved Bus Wrapper Performance • 19

Fig. 7. Bus wrapper with prefetching.

Table V. Prefetch Scheduling for the
Core in Figure 7

Idle cycle Schedule 1 Schedule 2
0 A A
1 B B
2 A
3 A
4 B A
5 A
6 B
7 A B
8 A A
9 B

B 40% of the time, leading to Schedule 1 in Table V. However, we can create a
more efficient schedule, as shown in Schedule 2. Although both schedules will
meet the constraints, the first schedule will likely consume more power. The
naive scheduler also does not consider the effects of register writes, which will
be taken into consideration using real-time scheduling techniques.

During our investigation for heuristics to solve the prefetching problem, we
noticed that the problem could be mapped to the widely studied problem of
real-time process scheduling, for which a rich set of powerful heuristics and
analysis techniques already exist. We now describe the mapping and then pro-
vide several prefetching heuristics (based on real-time scheduling heuristics)
and analysis methods.

5.2 Mapping to Real-Time Scheduling

A simple definition of the real-time scheduling problem is as follows. Given a
set of N independent periodic processes, and a set of M processors, we must

ACM Transactions on Design Automation of Electronic Systems, Vol. 7, No. 1, January 2002.

P1: IBC
CM042A-03 ACM-TRANSACTION January 18, 2002 10:37

20 • Lysecky and Vahid

order the execution of the N processes onto the M processors. Each process
has a period, Pi, a deadline, Di, and a computation time, Ci. The period of a
process is the rate at which the process requests execution. The deadline is the
length of time in which a process must complete execution after it requests to be
executed. Finally, the computation time is the length of time a process takes to
perform its computation. Therefore, real-time scheduling is the task of ordering
the execution of the N processes among the M processors, to ensure that each
process executes once every period Pi and within its deadline Di, where each
process takes Ci time to complete.

A mapping of the prefetching problem to the real-time process-scheduling
problem is as follows.

—Register→ process: A register that must be scheduled for prefetching corre-
sponds to a process that must be scheduled for execution.

—Internal bus → processor: The internal bus can accommodate only one
prefetch at a time. Likewise, a processor can accommodate only one process
execution at a time. Thus, the internal bus corresponds to a processor.

—Prefetch → process execution: A prefetch occurs over the internal bus, and
thus corresponds to a process execution occurring on a processor.

—Register age constraint→ process period: The register age constraint defines
the period during which the register must be prefetched, which corresponds
to the period during which a process must be scheduled.

—Register access-time constraint → process deadline: The access-time con-
straint defines the amount of time a read may take relative to the read
request, which corresponds to the amount of time a process must complete
its execution relative to the time it requested service.

—Prefetch time→ Process computation time: A prefetch corresponds to a pro-
cess execution, so the time for a prefetch corresponds to the computation
time for a process. In this paper, we assume a prefetch requires two cycles,
although the heuristics and analysis would of course apply if we extended
the register model to allow for (the rather rare) situation where different
registers would require different amounts of time to read them from the core
internals.

Given this mapping, we can now use several known real-time scheduling and
analysis techniques to solve the prefetching problem.

5.3 Heuristics

5.3.1 Cyclic Executive Approach. The cyclic executive approach [Burns
and Wellings 1997] is a straightforward process scheduling method that can
be used for a fixed set of periodic processes. The approach constructs a fixed re-
peating schedule called a major cycle, which consists of several minor cycles of
fixed duration. The minor cycle is the rate at which the process with the highest
priority will be executed. The minor cycle is therefore equal to the smallest age
of the registers to be prefetched. This approach is attractive due to its simplicity.
However, it does not handle sporadic processes (in our case, sporadic writes),

ACM Transactions on Design Automation of Electronic Systems, Vol. 7, No. 1, January 2002.

P1: IBC
CM042A-03 ACM-TRANSACTION January 18, 2002 10:37

Prefetching for Improved Bus Wrapper Performance • 21

Table VI. Prefetch Core Descriptions

Core Register Max Age D Priority RM PF Time Response Time Util. Util. Bound
1 DATA 3 2 1 2 2 66.7 100
2 GCD1 10 2 1 2 2 50.0 78.0

GCD2 10 2 2 2 4
CS 20 2 3 2 6

3 STAT 5 2 1 2 2 86.0 75.7
A 25 2 3 2 8
B 25 2 4 2 16
RES 10 2 2 2 4

all process periods (register-age constraints) must be a multiple of the minor
cycle time, and constructing the executive may be computationally infeasible
for a large number of processes (registers).

To serve as examples, we describe three cores with various requirements.
Table VI contains data pertaining to all three of our cores. Table VI contains
information regarding maximum register age constraint (Max Age), register ac-
cess time constraint or deadline (D), rate monotonic priority assignment (Prior-
ity RM), time required to prefetch register (PF Time), response time of register
(Response Time), utilization for register set (Util.), and utilization bound for
register set (Util. Bound). Core1 implements a single-channel DAC converter.
Although the analog portion of the converter could not be modeled in VHDL,
the technique for converting the analog input was implemented. The core has a
single register, DATA, that is read-only and updated randomly externally from
the system. Core2 calculates the Greatest Common Divisor (GCD) of three in-
puts while providing checksum information for the inputs and the result. The
core contains three registers, GCD1, GCD2, and CS. The result from the GCD
calculator is valid when GCD1 is equal to GCD2. Registers GCD1, GCD2, and
CS are independent read-only registers that are updated externally from the
system. Core3 has five registers, STAT, BIAS, A, B, and RES. STAT is a status
register that is read-only, and indicates the status of the core, i.e., busy or not
busy. Registers A and B are read-only registers that are updated randomly from
outside the system. RES is a read-only register containing the results of some
computation on registers A, B, and BIAS, where BIAS is a write-only register
that represents some programmable adjustment in the computation.

We can use the cyclic executive approach to create a schedule for each of our
three cores. For Core1, both the minor cycle and major cycles are three. For
Core2, the minor cycle is 10 and the major cycle is 20. Finally, for Core3, we can
construct a cyclic executive with a minor cycle of five and a major cycle of 25.

5.3.2 Rate Monotonic Priority Assignment. A more general scheduling ap-
proach can be used for more complex examples, wherein we determine which
process to schedule (register to prefetch) next based on a priority scheme. A
rate monotonic priority assignment [Burns and Wellings 1997] assigns a prior-
ity to each register based upon its age. The register with the smallest age will
have the highest priority. Likewise, the register with the largest age will have
the lowest priority. For our examples we will use a priority of 1 to indicate the
highest priority possible. Rate monotonic priority assignment is known to be

ACM Transactions on Design Automation of Electronic Systems, Vol. 7, No. 1, January 2002.

P1: IBC
CM042A-03 ACM-TRANSACTION January 18, 2002 10:37

22 • Lysecky and Vahid

optimal in the sense that if a process set can be scheduled with a fixed-priority
assignment scheme, then the set can also be scheduled with a rate monotonic
assignment scheme.

We again refer to Table VI for data pertaining to all three of our cores.
For Core1, the register age constraint of the register DATA is three cycles.
Given that DATA is the only register present, it is assigned the highest prior-
ity. Core2’s registers GCD1, GCD2, and CS have age constraints of 10, 10, and
20 respectively. Therefore, the corresponding priorities from highest to lowest
are GCD1, GCD2, and CS. However, because the register age constraint for
GCD1 and GCD2 are equal, the priorities for Core2 could also be, from highest
to lowest, GCD2, GCD1, and CS. It is important to note that the priorities of
registers with the same age constraint can be assigned arbitrary relative prior-
ities as long as the constraints are met. For Core3, the age constraints for the
registers STAT, A, B, and RES are respectively 5, 25, 25, and 10. Therefore, the
priority of the registers from highest to lowest would be STAT, RES, A, and B.

5.3.3 Utilization-Based Schedulability Test. The utilization-based schedu-
lability test [8] is used to quickly indicate whether a set of processes can be
scheduled, or in our case whether the registers can be prefetched. All N regis-
ters of a register set can be prefetched if Equation (1) is true, where Ci is the
computation time for register i, Ai is the age constraint of register i, and N
is the number of registers to be prefetched. The left-hand side of the equation
represents the utilization bound for a register set with N registers, and the
right-hand side represents the current utilization of the given register set:

N∑
i=1

(
Ci

Ai

)
< N (21/N − 1) (1)

If the register set passes this test, all registers can be prefetched and no
further schedulability analysis is needed. However, if the register set fails the
test, a schedule for this register set that meets all constraints might still exist.
In other words, the utilization-based schedulability test will indicate that a
register set can be prefetched, but does not indicate that a register set cannot
be prefetched.

We can analyze our cores to determine whether we can schedule them. From
Table VI, we can see that both Core1 and Core2 pass the utilization-based
schedulability test with respective utilizations of 66.7% and 50.0%, where the
corresponding utilization bounds were 100% and 78.0%. This indicates that we
can create a schedule for both of these cores and we do not need to perform any
further analysis. However, Core3 has a utilization of 86.0%, but the utilization
bound for four registers is 75.7%. Therefore, we have failed the utilization-based
schedulability test, though a schedule might still exist.

5.3.4 Response-Time Analysis. Response-time analysis [Burns and
Wellings 1997] is another method for analyzing whether a process set (in
our case, register set) can be scheduled. However, in addition to testing the
schedulability of a set of registers, it also provides the worst-case response
time for each register. We calculate the response of a register using Equation

ACM Transactions on Design Automation of Electronic Systems, Vol. 7, No. 1, January 2002.

P1: IBC
CM042A-03 ACM-TRANSACTION January 18, 2002 10:37

Prefetching for Improved Bus Wrapper Performance • 23

(2), where Ri is the response time for register i, Ci is the computation time of
register i, and Ii is the maximum interference that register i can experience
in any time interval [t, t + Ri). The interference of a register is the amount of
time that a process must wait while other higher-priority processes execute.

Ri = Ci + Ii (2)

A register set is schedulable if all registers in the set have a response time
less than or equal to their age constraint. From Table VI, we can see that the
registers of all three cores will meet their register age constraints. Therefore, it
is possible to create a prefetching schedule for all three cores. It is interesting
to note that although the utilization-based schedulability test failed for Core3,
response time analysis indicates that all of the registers can be prefetched. We
refer the reader to Burns and Wellings [1997] for further details on response-
time analysis.

5.3.5 Sporadic Register Writes. We now consider the impact of writes to
core registers. Writes come at unknown intervals, and a write ties up the core’s
internal bus and thus delays prefetches until done. We can therefore view a
register write as a high-priority sporadic process. We can attribute a maximum
rate at which write commands will be sent to the core. We will also introduce a
deadline for a write. The deadline of a write is similar to the access-time for a
register being prefetched. This deadline indicates that when a write occurs, it
must be completed within the specified number of cycles.

In order to analyze how a register write will impact this scheduling, we can
create a dummy register, WR, in our register set. The age of the WR register
will be the period that corresponds to the maximum rate at which a write will
occur. WR’s access-time will be equal to its deadline. We can now analyze the
register set to determine if a prefetching schedule exists for it. This analysis
will provide us with an analysis of the worst case scenario in which a write will
occur once every period.

5.3.6 Deadline Monotonic Priority Assignment. Up to this point, we have
been interested mainly in a static schedule of the register set. However, because
writes are sporadic, we must provide some dynamic mechanism for handling
them. Thus, a dynamic scheduling technique should be used because we cannot
accurately predict these writes. Therefore, we can use a more advanced pri-
ority assignment scheme, deadline monotonic priority assignment [Burns and
Wellings 1997]. Deadline monotonic priority assignment assigns a priority to
each process (register) based upon its deadline (access-time), where a smaller
access-time corresponds to a higher priority. We can still incorporate rate mono-
tonic priority assignment in order to assign priorities to registers with equal
access-times. Deadline monotonic priority assignment is known to be optimal
in the sense that if a process set can be scheduled by a priority scheme, then it
can be scheduled by deadline monotonic priority assignment.

For example, in order to accommodate writes to the BIAS register in Core3,
we can add the BIAS register to the prefetching algorithm. The deadline for
the BIAS register will be such that we can ensure that writes will always have

ACM Transactions on Design Automation of Electronic Systems, Vol. 7, No. 1, January 2002.

P1: IBC
CM042A-03 ACM-TRANSACTION January 18, 2002 10:37

24 • Lysecky and Vahid

Fig. 8. Performance in ns (top), size in gates (middle), and energy in nJ (bottom).

the highest priority when we use the deadline monotonic priority assignment.
Using this priority assignment mechanism, the priority of the registers from
highest to lowest would be BIAS, STAT, RES, A, and B.

5.4 Experiments with “Real-Time” Prefetching

In addition to implementing the ADJUST core as described above, we imple-
mented two additional examples in order to evaluate the impact on perfor-
mance, size, and energy using our real-time pre-fetching. The CODEC core
contains three registers DIN, DOUT, and STAT. This core behaves like a sim-
ple compressor/decompressor, whereby the input data is modified via some arbi-
trary translation, after which the STAT register is updated to reflect completion.
The FIFO core contains two registers DATA and STAT. This core represents a
simple FIFO that has data stored in DATA and the current number of items in
the FIFO stored in STAT.

We modeled the cores as synthesizable register-transfer VHDL models, re-
quiring 215, 204, and 253 lines of code, respectively—note that we intentionally
did not describe internal behavior of the cores, but rather just the register-
access-related behavior, so we could see the impacts of prefetching most clearly.
We used Synopsys Design Compiler for synthesis as well as Synopsys power
analysis tools.

Figure 8 summarizes the results for the three cores. For each core, we ex-
amined three possible bus wrapper configurations: no bus wrapper (No BW),
a bus wrapper without prefetching (BW), and a bus wrapper with real-time
prefetching (RTPF).

The first chart in Figure 8 summarizes performance results. Using our
real-time prefetching heuristic, we can see a good performance improvement
when compared to a bus wrapper without prefetching. However in FIFO, we

ACM Transactions on Design Automation of Electronic Systems, Vol. 7, No. 1, January 2002.

P1: IBC
CM042A-03 ACM-TRANSACTION January 18, 2002 10:37

Prefetching for Improved Bus Wrapper Performance • 25

only see a very small performance improvement using real-time prefetch-
ing. This small improvement is due to fact that the DATA register in FIFO
cannot be prefetched using this approach. If we were to prefetch DATA us-
ing real-time prefetching, we would empty the FIFO and lose data. Fur-
thermore, without any prefetching, we can see a significant performance
penalty.

The second chart in Figure 8 summarizes size results. As expected, the size
of the cores increased when a bus wrapper was added, and further increased
when prefetching was added to the bus wrapper. The average increase in size
caused by adding real-time prefetching to the bus wrapper was only 1.4K gates.
This increase in design complexity was due to the need to keep track of cur-
rent register ages. Furthermore, this size increase was relatively small when
compared to a typical core size of 10K to 20K gates.

The third chart in Figure 8 summarizes energy consumption for our test
vectors. In all three cores, there was an overall increase in energy consumption
when a bus wrapper was added to the core. However, the addition of prefetch-
ing to the bus wrappers did not always strictly increase or decrease energy
consumption. In fact, real-time prefetching increased energy consumption in
CODEC and FIFO, and decreased energy consumption in ADJUST. As expected,
when compared to the core without a bus wrapper, prefetching resulted in an
increase in energy consumption.

6. UPDATE-DEPENDENCY BASED PREFETCHING USING PETRI NETS

6.1 Overview

In some cases, a core designer may be able to provide us more information
regarding when the core’s internal registers get updated—in particular, update
dependencies among registers, e.g., if register A is updated externally, then
register B will be updated one cycle later. Using this information, we can design
a schedule that performs fewer prefetches to satisfy given constraints, and thus
can yield advantages of being able to handle more complex problems, or of using
less power.

6.2 General Register Attributes

We need a method for capturing the information a designer provides regarding
register updates. In Section 3.2, we provided a taxonomy of register attributes
can be used to categorize how a register is used. We extend this by introducing
update dependecies. Update dependencies provide further details on when a
register gets updated as a result of other updates (inducements). There are two
kinds of update dependencies:

—Internal dependencies: Dependencies between registers must be accurately
described. Dependencies between registers affect both the operation of the
core and the time at which registers are updated. Therefore, these depen-
dencies are extremely important in providing an accurate model of a core’s
behavior.

ACM Transactions on Design Automation of Electronic Systems, Vol. 7, No. 1, January 2002.

P1: IBC
CM042A-03 ACM-TRANSACTION January 18, 2002 10:37

26 • Lysecky and Vahid

—External dependencies: Updates to registers via reads and writes over the
OCB also need to be included in our model. This information is important
because reads and writes can directly update registers or trigger updates to
other registers, e.g., a write to a control register of a CODEC core will trigger
an event that will update the output data register. Likewise, updates from
external ports to internal core registers must also be present in our model.
These events occur at random intervals and cannot be directly monitored by
a bus wrapper and are therefore needed to provide a complete model of a
core.

We needed to create a model to capture the above information. After analyz-
ing many possible models to describe both internal and external update depen-
dencies, we concluded that a Petri net model would best fit our requirements.

6.3 Petri Net Model Construction

As in all Petri net models, we have places, arcs, and transitions. In our model,
a place represents data storage, i.e., a register, or any bus that the bus wrapper
can monitor. In this model, a bus place will generate tokens that will be out-
puted over all outgoing arcs and consumed by data storage places whenever an
appropriate transition is fired. A transition represents an update dependency
between either the bus and a register or between two registers. Transitions
may be labeled with conditions that represent some requirement on the data
coming into a transition. However, in many cases, a register may be updated
from some external source, i.e., the register’s update-type is volatile. Therefore,
we need a mechanism to describe such updates. We will use a transition without
incoming arcs and without an associated condition to represent this behavior.
We will refer to such a transition as a random transition. Given random transi-
tions, tokens can also be generated by external sources that cannot be directly
monitored by the bus wrapper. Thus, our model provides a complete description
of the core’s internal register dependencies without providing all details of the
core’s internal behavior.

We implemented three core examples to analyze our update dependency
model and prefetching technique. In order to demonstrate the usefulness of our
model we will describe one of the cores we implemented, which we will refer
to as ADJUST, and elaborate on this example throughout the paper. ADJUST
contains three registers GO, MD, and S. First, we annotate each register with
the general register attributes described earlier. The GO register has the at-
tributes of static-update, write access, no notification, and singly structured.
The MD register has the attributes of volatile-update, read/write access, no
notification, and singly structured. Finally, the S register has the attributes of
volatile update, read-only access, no notification, and singly structured. Next,
we constructed the Petri net for ADJUST.

Figure 9 shows the register update dependency model for ADJUST. From
this model we can see how each register is updated. GO is updated whenever a
write request for GO is initiated on the OCB. S is updated randomly by some
external event that is unknown to the prefetch unit. MD is updated when GO
is equal to 1, a write request for MD is initiated on the OCB, and some external

ACM Transactions on Design Automation of Electronic Systems, Vol. 7, No. 1, January 2002.

P1: IBC
CM042A-03 ACM-TRANSACTION January 18, 2002 10:37

Prefetching for Improved Bus Wrapper Performance • 27

Fig. 9. ADJUST register dependencies.

event occurs. Therefore, we now have a complete model of the ADJUST core
that can be used to create a prefetching algorithm.

Using the current model of ADJUST, we need three prefetch registers in
the bus wrapper, namely, GO′, MD′, and S′. GO′ would be updated whenever a
write to GO was initiated over the OCB. For MD and S, we need some method
of refreshing the prefetch registers to keep them as up-to-date as possible. We
will later discuss the heuristics for updating registers with incoming random
transitions. However, we further know that prefetching the MD register would
not be required until a write to MD was made over the OCB and the GO register
was equal to 1. This simple interpretation of the model will reduce the power
consumed by the prefetch unit by not prefetching MD if it is not needed.

6.4 Model Refinement for Dependencies

Further refinement of our register update dependency model can be made to
eliminate some random transitions. Although the model of a particular core may
have many random transitions, there may exist some relationships between the
registers with random transitions. If two registers are both updated by the same
external event, it is possible that a relationship may exist between the registers.

For example, in a typical CODEC core, we would find a data register and a
status register. When the data register is updated, the status register is also
updated to indicate the operation has completed. Although both registers are
updated at random times, we know that if the status register indicates comple-
tion, then the data register has been updated.

We can thus eliminate one random transition by replacing the random tran-
sition with a transition having an incoming arc from the related register and as-
signing an appropriate condition to this transition. Thus, we have successfully
refined our model to eliminate a random transition. The goal of this refinement
is to eliminate as many random transitions as possible, but it is important
to note that it is not possible to eliminate all random transitions. Therefore,
we still need a method for refreshing the contents of registers with incoming
random transitions.

Figure 10 shows a refined register update dependency model for the ADJUST
core. In this new model, we have eliminated one random transition by replacing

ACM Transactions on Design Automation of Electronic Systems, Vol. 7, No. 1, January 2002.

P1: IBC
CM042A-03 ACM-TRANSACTION January 18, 2002 10:37

28 • Lysecky and Vahid

Fig. 10. Refined ADJUST register dependencies.

it with a transition that will fire if S is equal to 1. Hence, we need to modify our
prefetching algorithm to accompany this change. We now know that we only
need to prefetch MD if S is equal to 1, GO is equal to 1, and a write to MD
was initiated over the OCB. This refinement further simplifies our prefetching
algorithm and will again reduce power consumption.

6.5 Prefetch Scheduling

Given an update dependency model of a core, we need to construct a schedule to
prefetch the core’s registers into the bus wrapper’s prefetch registers. Figure 11
describes our update dependency model prefetching heuristic using pseudo-
code. Our heuristic uses the update dependency model in conjunction with our
real-time prefetching to create a schedule for prefetching the core’s registers.
The following description will further elaborate on the heuristic.

In order to implement our prefetching heuristic, we will need two data struc-
tures. The first data structure needed is a prefetch register heap, or priority
queue, used to store the registers that need to be prefetched. Second, we need
a list of update arcs that must be analyzed after a register is prefetched or a
read or write request is detected on the OCB. Using these data structures, we
will next describe how the prefetch unit will be designed.

The first step in our prefetching heuristic is to add all registers with incoming
random transitions to the prefetch register heap. These registers will always
remain in the heap because they will need to be repeatedly prefetched in order
to satisfy their register age constraints.

Next, our prefetch heuristic needs to respond to read and write requests on
the OCB. In the event of a read request, the prefetch unit will add any outgoing
arcs to the list of arcs needed to be analyzed. As described in our real-time
prefetching work, a write is treated as another register with special age and
access-time constraints, i.e., the register age constraint is 0 and the access-
time constraint is initially set to infinity. Because the core internal bus may
be currently in use performing a prefetch, we use this mechanism to eliminate
any contention. As described below, by setting the access-time constraint on
the write register to 0, we will ensure that the write will be the next action
performed. Therefore, a write request will be handled by first copying the data

ACM Transactions on Design Automation of Electronic Systems, Vol. 7, No. 1, January 2002.

P1: IBC
CM042A-03 ACM-TRANSACTION January 18, 2002 10:37

Prefetching for Improved Bus Wrapper Performance • 29

Fig. 11. General register model prefetching heuristic used to implement PFU.

into the corresponding prefetch register, setting the access-time constraint to
0, and adding the write register to the prefetch register heap. In addition, any
outgoing arcs will be added to the list of update arcs.

We will use our real-time prefetching to prefetch registers according to their
priorities as assigned by the deadline monotonic priority assignment. When
two registers have the same priority assigned by this mechanism, we will use
the priority assigned by the rate-monotonic priority assignment to schedule
the prefetching. According to this heuristic, registers with an access-time con-
straint of 0 will be prefetched first. That means that all write requests and, as
we will describe later, all registers that have been updated will be prefetched
first. Note that writes will still take highest priority because their register
age constraint is 0. If no write requests or registers without incoming random

ACM Transactions on Design Automation of Electronic Systems, Vol. 7, No. 1, January 2002.

P1: IBC
CM042A-03 ACM-TRANSACTION January 18, 2002 10:37

30 • Lysecky and Vahid

transitions need to be prefetched, our prefetching heuristic will next schedule
registers with incoming random transitions according to their rate-monotonic
priority assignment. Therefore, our prefetch register heap will be sorted first by
deadline-monotonic priority assignment and further by rate-monotonic priority
assignment.

After each register prefetch is made or a read or write request is detected on
the OCB, we need to analyze all arcs in the update arc list. If any transition
fires, the outgoing arcs of this transition will be added to the list. If a token
reaches another place, we set the corresponding register’s access-time to 0 and
add it to the heap, thus ensuring that this register is prefetched as soon as
possible.

In order to better understand this prefetching heuristic, we will look at the
ADJUST core. In ADJUST, we have one random transition which is connected
to the S register. We noticed that in our design, on average, we only needed to
read the contents of S every six cycles. Therefore, we set the register age con-
straint to six cycles, and the register access-time constraint to two, indicating
that the register S must be prefetched every six cycles. For MD, both the regis-
ter age and access-time constraints are two cycles. GO, however, has neither an
age constraint nor an access-time constraint because it is a write-only register.
Note that even though GO is a write-only register, a copy must be maintained
in the bus wrapper, as it is needed in order to analyze the update dependencies.
Our prefetching algorithm will monitor the OCB. If a write to the GO register
is made, the data will be copied into GO′, and the write register access-time
will be set to 0. On a write to the MD register, the access-time of S will be set to
0. Also if GO is equal to 1 and S is equal to 1, then set the access-time for MD
to 0. Finally, we will use the scheduling above to prefetch the registers when
needed and perform write operations.

6.6 Experiments with Update-Dependency Prefetching

We implemented the update dependency prefetching on the same three cores as
above, namely ADJUST, CODEC, and FIFO. Figure 12 summarizes the results
for the three cores. We now have four possible bus wrapper configurations for
each core: no bus wrapper (no BW), a bus wrapper without prefetching (BW),
a bus wrapper with real-time prefetching (RTPF), and a bus wrapper with our
update dependency prefetching model (UDPF).

The first chart in Figure 12 summarizes performance results. In all three
cores, the use of our update dependency prefetching method almost entirely
eliminated the performance penalty associated with the bus wrapper. There
was still a slight overhead caused by starting the prefetch unit. Using our real-
time prefetching heuristic, we can see that although there is a performance
improvement when compared to a bus wrapper without prefetching, it did not
perform as well as our update dependency model.

The second chart in Figure 12 summarizes size results. The average increase
in size caused by adding the update dependency prefetching technique to the
bus wrapper was only 1.5K gates. In comparison, real-time prefetching resulted
in an average increase of 1.4K gates. It is interesting to note why the two

ACM Transactions on Design Automation of Electronic Systems, Vol. 7, No. 1, January 2002.

P1: IBC
CM042A-03 ACM-TRANSACTION January 18, 2002 10:37

Prefetching for Improved Bus Wrapper Performance • 31

Fig. 12. Performance in ns (top), size in gates (middle), and energy in nJ (bottom).

approaches, although quite different, resulted in approximately the same size
increase. As stated earlier, using real-time prefetching, we increase the design
complexity due to the need to keep track of current register ages. However,
using our extended approach, complexity increases due to added logic needed
to analyze update dependencies.

The third chart in Figure 12 summarizes energy consumption for our test
vectors. However, the addition of prefetching to the bus wrappers does not al-
ways strictly increase or decrease energy consumption. In fact, we can see that
in ADJUST and FIFO, there is a decrease in energy consumption when our
update dependency prefetching is added to the bus wrapper, but in CODEC,
there is an increase. On the other hand, real-time prefetching increases en-
ergy consumption in CODEC and FIFO, and decreases energy consumption in
ADJUST.

More importantly, if we compare the results of our real-time prefetching
to our update dependency prefetching, we notice that the update dependency
prefetching results in significantly less energy consumption. This is easily ex-
plained by the fact that this approach only prefetches registers when they have
been updated whereas our real-time prefetching will prefetch registers more of-
ten to keep them as up-to-date as possible. Therefore, by eliminating the need
to prefetch all registers within their register age constraints, we can reduce
energy consumption.

7. CONCLUSIONS

While keeping a core’s interface and internal behavior separated is key to a
core’s marketability, we demonstrated that the use of such bus wrappers, both
non-PVCI and PVCI, results in size, power, and performance overhead. Thus,

ACM Transactions on Design Automation of Electronic Systems, Vol. 7, No. 1, January 2002.

P1: IBC
CM042A-03 ACM-TRANSACTION January 18, 2002 10:37

32 • Lysecky and Vahid

the retargetability advantages of such a standard seem to come with some
penalties.

We introduced prefetching as a technique to overcome the performance over-
head. We demonstrated that in some common cases of register combinations,
prefetching eliminates the performance degradation at the expense of accept-
able increases in size and power. By overcoming the performance degradation
associated with bus wrappers, prefetching thus improves the usefulness of
cores.

We have further provided a powerful solution to this problem by mapping the
problem to the real-time process-scheduling domain, and then applying heuris-
tics and analysis techniques from that domain. We also provided a general
register update dependency model that we used to construct a more efficient
prefetching schedule, in conjunction with our real-time prefetching. We demon-
strated the effectiveness of these solutions through several experiments, show-
ing good performance improvements with acceptable size and energy increases.
Furthermore, we demonstrated that using our update dependency model we
were able to better prefetch registers when compared to our real-time prefetch-
ing methodology. The two approaches are thus complementary—the real-time
approach can be used when only register constraints are provided, while the
model-based approach of this paper can be used when register update informa-
tion is also provided.

8. FUTURE WORK

Although prefetching works well, there are many possibilities for improve-
ments. In our current approach we assume that all registers of the core will be
prefetched. However, for cores with large numbers of registers, this approach
is not feasible. Thus, we are considering restricting the number of registers
that can appear in a bus wrapper. This creates new cache-like issues such as
mapping, replacement, and coherency issues that are not present in our cur-
rent design. In addition, we can further evaluate the effects of prefetching on
larger core examples. Another direction involves developing prefetching heuris-
tics that optimize a given cost function of performance, power, and size.

REFERENCES

BURNS, A. AND WELLINGS, A. 1997. Real-time systems and programming languages. Addison-
Wesley, Reading, MA.

CHOU, P., ORTEGA, R. B., AND BORRIELLO, G. 1995. Interface co-synthesis techniques for embedded
systems. In International Conference on Computer-Aided Design (1995), 280–287.

CLEMENT, B., HERSEMEULE, R., LANTREIBECQ, E., RAMANADIN, B., COULOMB, P., AND POGODALLA, F. 1999.
Fast prototyping: a system design flow applied to a complex system-on-chip multiprocessor
design. In Design Automation Conference (1999).

COWARE. 1999. CoWare N2C design system overview. http://www.coware.com/products.html.
FLEISCHMANN, J., BUCHENRIEDER, K., AND KRESS, R. 1999. Java driven codesign and prototyping of

networked embedded systems. In Design Automation Conference (1999).
KOZYRAKIS, C. AND PATTERSON, D. A. 1998. A new direction for computer architecture research.

Computer 31, 11.
KUHN, T., ROSENSTIEL, W., AND KEBSCHULL, U. 1997. Description and simulation of hard-

ware/software systems with Java. In Design Automation Conference (1997).

ACM Transactions on Design Automation of Electronic Systems, Vol. 7, No. 1, January 2002.

P1: IBC
CM042A-03 ACM-TRANSACTION January 18, 2002 10:37

Prefetching for Improved Bus Wrapper Performance • 33

LUI, C. AND LAYLAND, J. 1973. Scheduling algorithms for multiprogramming in a hard real-time
environment. J. Assn. Comput. Mach. 46–61.

MADISETTI, V. AND SHEN, L. 1997. Interface design for core-based systems. IEEE Des. Test Comput.
42–51.

MENTOR GRAPHICS. n.d. Inventra core library. http://www.mentorg.com/inventra/.
METAFLOW. 1999. Implosion ARM-based Internet appliance system on a chip platform.

http://www.metaflow.com/html/implosion.htm.
MOTOROLA. 1999. IP interface standard document. http://www.mot-sps.com/technology/srs/.
PATTERSON, D. A. AND HENNESSY, J. L. 1990. Computer architecture, a quantitative approach.

Morgan Kaufmann, San Francisco, CA.
PHILIPS SEMICONDUCTORS. 1999. Introduction to rapid silicon prototyping: hardware-software

co-design for embedded systems-on-a-chip ICs. http://www.semiconductors.com/acrobat/other/
technology/velocity/paper2221.pdf.

RABAEY, J., ABNOUS, A., ICHIKAWA, Y., SENO, K., AND WAN, M. 1997. Heterogeneous reconfigurable
systems. In Proceedings of the IEEE Workshop on Design and Implementation of Signal Process-
ing Systems (1997), 24–34.

ROWSON, J. AND SANGIOVANNI-VINCENTELLI, A. 1997. Interface-based design. In Design Automation
Conference (1997).

SEMICONDUCTOR INDUSTRY ASSOCIATION. 1999. International technology roadmap for
semiconductors: 1999 edition. International SEMATECH, Austin, TX.

VAHID, F. AND GIVARGIS, T. 1999. The case for a configure-and-execute paradigm. In International
Workshop on Hardware/Software Codesign (1999).

VAHID, F. AND TAURO, L. 1997. An object-oriented communication library for hardware-software
co-design. In International Workshop on Hardware/Software Codesign (1997), 81–86.

VAN MEERBERGEN, J., TIMMER, A., LEIJTEN, J., HARMSZE, F., AND STRIK, M. 1998. Experiences with
system level design for consumer ICs. In Proceedings of the IEEE Computer Society Workshop on
VLSI System Level Design (1998).

VERCAUTEREN, S., LIN, B., AND DE MAN, H. 1996. Constructing application-specific heterogeneous
embedded architectures from custom HW/SW applications. In Design Automation Conference
(1996), 547–551.

VIRTUAL SOCKET INTERFACE ASSOCIATION. 1997a. Architecture document. http://www.vsi.org.
VIRTUAL SOCKET INTERFACE ASSOCIATION. 1997b. Virtual component interface standard version 1.0.

http://www.vsi.org.
VIRTUAL SOCKET INTERFACE ASSOCIATION. 1998. On-chip bus development working group, Specifica-

tion 1 Version 1.0 (OCB 1 1.0). http://www.vsi.org.

Received July 2000; accepted May 2001

ACM Transactions on Design Automation of Electronic Systems, Vol. 7, No. 1, January 2002.

