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Abstract—The earliest and the most critical stage in VLSI
layout design is the placement. The background of which is the
rectangle packing problem: Given set of rectangular modules of
arbitrary sizes, place them without overlap on a plane within
a rectangle of minimum area. Since the variety of the packing
is uncountably infinite, the key issue for successful optimization
is the introduction of a finite solution space which includes an
optimal solution. This paper proposes such a solution space where
each packing is represented by a pair of module name sequences,
called a sequence-pair. Searching this space by simulated an-
nealing, hundreds of modules have been packed efficiently as
demonstrated. For applications to VLSI layout, we attack the
biggest MCNC benchmarkami49with a conventional wiring area
estimation method, and obtain a highly promising placement.

I. INTRODUCTION

L AYOUT IN PHYSICAL DESIGN of VLSI is, in short, to
pack all the circuit elements in a chip without violating

design rules, so that the circuit performs well and the pro-
duction yield is high. There are so much variety of targets in
different stages but the following problem is the core of them.

Rectangle Packing Problem: RP
Let be a set of rectangular modules of fixed orienta-

tions, whose heights and widths are given in real numbers. A
packingof is a nonoverlapping placement of the modules.
The minimum bounding rectangle of a packing is called the
chip. Find a packing of onto a chip of the minimum area.

A packing of six modules is shown in Fig. 1.
The decision version of our problemRP(A) is to decide

whether can be packed onto a chip of area. Baker,
Coffman, and Rivest [1] proved the -completeness of a
similar problemRP(H,W) : decide whether can be packed
onto the chip of height and width . We can show
RP(A) to be -complete using the fact that any instance
of RP(H,W) can be polynomially reducible to an instance of
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Fig. 1. A packing on a chipW � H.

RP(A) by the following conversion.

the maximum width over modules

Our problemRP is harder thanRP(A), so -hard.
Since the heights and widths of modules are real numbers,

RP is not simply a combinatorial optimization problem. In
fact, there have been several numerical approaches [2], [3].
They first generate a possibly overlapping arrangement of
modules, and then move modules to reduce the overlapping
cost. But the overlap elimination is very hard for the numerical
approaches withoutad hocpost-processing.

An alternative approach is “combinatorial search”. In this
approach, a set of codes is defined as asolution space. Each
code represents a construction of placement. A code is said to
be feasible if the construction is consistent, i.e., there exists
a packing corresponding to the code. The evaluation of a
feasible code is the area of the chip, and the evaluation of an
infeasible code is infinitely negative. The combinatorial search
aims at finding a best code in the solution space. However,
exhaustive search of the whole space will take too much time.
Since the problem isNP-hard, the size of any such solution
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space is expected to be exponential. Several heuristics have
been proposed to find a good solution in a moderate time, for
example, simulated annealing and genetic algorithms. Given
a time limit, such a heuristic stops the search half-way and
outputs the best solution found so far. For this search to be
effective, the minimum requirement of the solution space is
the following four items.

1) The solution space is finite.
2) Every solution is feasible.
3) Realization of a code is possible in polynomial time.
4) There exists a code which corresponds to one of the
optimal solutions.

The solution space that satisfies the above four requirements
is called P-admissible.

The reasons for 1), 3), and 4) are obvious. That for 2) is
most heuristics pick up one solution after another along the
neighboring structure defined on the space, consulting with
the difference of evaluations (gain) to the previous solution.
Therefore, if infeasible solutions are included, the continuity
will be destroyed and convergence to a feasible solution is not
guaranteed.

A known practical solution space is one derived from the
slicing floorplanproposed by Otten [4] and others. It satisfies
1), 2), and 3). Several optimization heuristics are applied for
the space, and one of the most successful approaches uses
simulated annealing [5]. However, since the optimal solution
can be nonslicing, 4) is not satisfied. This fact discourages us
to start searching for the best in the space. Efforts have been
paid to let the space include nonslicing structures [6], [7], but
they have not been successful to satisfy 4).

Another approach is proposed by Onodera, Taniguchi, and
Tamaru [8]. They construct a solution space by assigning one
out of the four relations, “left of,” “right of,” “above,” and
“below,” to every pair of modules. This space satisfies 4)
since any packing satisfies a combination of the relations.
But there are many infeasible codes such as; moduleis
left of module , is left of and is left of . Thus their
space is not P-admissible either. As a consequence, the space
does not admit heuristics such as simulated annealing. In their
paper, exhaustive search with a branch-and-bound technique
is applied to find an exactly optimal solution, but the size of
tractable problems is limited up to six modules.

This paper provides a P-admissible solution space, in which
each code is a pair of module name sequences. By searching
this space, it has become possible to pack hundreds of modules
efficiently, as demonstrated in Figs. 7 and 8.

To utilize this solution space ofRP for VLSI layout design,
the evaluation of a packing has to be modified to consider
wires. Some evaluating functions are available for estimating
the final chip area [5], [8]. Among them, we use the formula
proposed by [8]. The largest MCNC building-block benchmark
was successfully placed by simulated annealing in about 30
min (Fig. 9).

This paper is organized as follows. In Section II, a mapping
from a given packing to a pair of module name sequences is
given. It is proved that at least one of the optimal solutions is
included in the space. Section III provides a procedure for an

Fig. 2. Positive step-lines.

inverse mapping from a sequence pair to a packing. Section IV
demonstrates how the space can be utilized in VLSI placement
problems. Section V then concludes with final remarks.

An early version of this paper was presented in [9].

II. FROM A PACKING TO A SEQUENCE-PAIR

Let be a packing on chip . See Fig. 1 for an example.
We describe a procedure calledGridding , which encodes to
a sequence-pair, an ordered pair of module name sequences.

A. Gridding

For each module, we draw lines using a pebble(which is
regarded as the nib of a pen). The pebbleis initially located at
the upper right corner of and starts to move upward. It turns
its direction alternatively right and up until it reaches the upper
right corner without crossing: i) boundaries of other modules,
ii) previously drawn lines, and iii) the boundary of the chip.
The drawn line is called theup-right step-lineof module .
Similarly, thedown-left step-lineof is drawn. The union of
these two step-lines and the connecting diagonal line ofis
called thepositive step-lineof . It is always possible to draw
such positive step-line for a module. They are referred to by
the corresponding module names.

An example of resultant positive step-lines is shown in
Fig. 2.

From the construction, we have that no two positive step-
lines cross each other. It implies that these positive step-lines
can be linearly ordered, as well as the corresponding modules.
Here we order the positive step-lines from left. Let be the
module name sequence in this order.

In Fig. 2, “ ” is obtained.
Negative step-linesare drawn similarly as the positive step-

lines. The difference is that a negative step-line is the union of
the left-up step-lineand right-down step-line, whose direction
changing policies are “left, up, left, up, ,” and “right, down,
right, down, ,” respectively. We order the negative step-lines
also from left. Let be the module name sequence in this
order.
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Fig. 3. Negative step-lines.

An example of negative step-lines is shown in Fig. 3.
Observing it from left, “ ” is obtained.

The procedure Gridding outputs the sequence-pair
.

B. Information of the Sequence-Pair

Let be the sequence-pair produced byGridding
for a packing . Modules and are related in exactly one
of four ways: is after/before in . Let us define
four disjoint subsets of , accordingly.

aa is after in both and ,
bb is before in both and ,
ba is before in and after in ,
ab is after in and before in .

For example, with respect to the sequence-pair
, four subsets for module are aa

bb ba , and ab .
Any module other than belongs to a unique subset, and

it is trivial that two modules are in a dual relation through
, and as

aa bb

ba ab

In a packing, if the right side of module is left of the left
side of module , is said to beleft of . Similarly, right
of, above, below relations between two modules are defined.

Theorem 1: Let be the sequence-pair produced by
Gridding for a packing . If bb , then is left of

in . The claim also holds when the pair of words (“bb”
and “left of”) is replaced by any of (“ aa” and “right of”),
(“ ba” and “above”), and (“ ab” and “below”).

In the previous example, moduleis in aa . One can
examine is actually right of in the packing shown in Fig. 1.

Proof: Let and be arbitrary two modules. The step-
lines of divide the chip into four regions. Among them, the
region surrounded by the up-right step-line ofand the right-
down step-line of together with the right side of the chip is

called theright-coneof . Analogously, theleft-, above-, and
below-conedenote the other three regions.

Suppose is in aa . This implies that the positive
step-line of is in the union of the right-cone and the below-
cone of . Also it is implied that the negative step-line of
is in the union of the right-cone and the above-cone of. The
cross point of the positive and negative step-lines ofis in
their intersection, that is, the right-cone of. Then, module
is in the right-cone of . Every modules in the right-cone of

is right of module by definition of the up-right step-line
and the right-down step-line of.

It is clear that the claim holds for the other cases.

III. FROM A SEQUENCE-PAIR TO A PACKING

In the previous section, we analyzed the packing and fixed
the procedureGridding to obtain one sequence-pair from a
given packing. Now we provide a procedure to synthesize one
packing from an arbitrary sequence-pair.

A. Constraint of a Sequence-Pair

Given a sequence-pair , we read a constraint from
it as follows.

The Constraint Implied by a Sequence-Pair
If bb , module must be left of module . This

is also the constraint with replacing the pair of words (“bb”
and “left of”) with any of (“ aa” and “right of”), (“ ba”
and “above”), and (“ ab” and “below”).

It is easily seen that the constraint imposed on the packing
by a sequence-pair is unique. Furthermore, the following
theorem holds.

Theorem 2: The constraint is always satisfiable.
Proof: Consider an grid. Label the horizontal grid

lines and vertical grid lines with module names along and
from top and from left, respectively. A cross point of the

horizontal grid line of label and the vertical grid line of label
is referred to by . Then, rotate the resultant grid by 45

degrees counter clockwise to get an oblique grid. (See Fig. 4.)
Put each module with its center being on . Expand
the separation of grid lines enough to eliminate overlapping
of modules. (The expansion is enough if the separation is
times larger than the longest width/height over modules.) The
resultant packing trivially satisfies the constraint implied by
the given sequence-pair.

An example is shown in Fig. 4.

B. The Best Packing under the Constraint

Given , one of the optimal packings under the
constraint can be obtained in time by applying the well-
known longest path algorithmfor vertex weighted directed
acyclic graphs. The process is given below.

Based on “left of” constraint of , a directed and
vertex-weighted graph ( : vertex set, : edge
set), called thehorizontal-constraint graph, is constructed as
follows.

1) : source , sink , and vertices labeled with module
names
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Fig. 4. A packing on an oblique grid for(�+;��) = (ecadfb; fcbead).

2) : and for each module , and if
and only if bb (“left of” constraint)

3) Vertex-weight: zero for and , width of module for
the other vertices

Similarly, the vertical-constraint graph is con-
structed using “below” constraint and the height of each
module.

Neither of these graphs contains any directed cycle. We set
the X-coordinate of to be the longest path length fromto
in . The Y-coordinate of is set independently using .
If two modules and are in horizontal relation, then there
is an edge betweenand in , hence they do not overlap
horizontally in the resultant placement. Similarly, ifand
are in vertical relation, they do not overlap vertically. Thus
no two modules overlap each other in the resultant placement
because any pair of modules are either in horizontal or vertical
relation.

The width and the height of the chip is determined by the
longest path length between the source and the sink in
and , respectively. Since the width and the height of the
chip is independently minimum, the resultant packing is the
best of all the packings under the constraint. The longest path
length calculation on each graph can be done in time,
proportional to the number of edges in the graph.

As an example, and are shown in Fig. 5 for
. The resultant placement after

the longest path length calculation is shown in Fig. 6.

C. The P-admissible Solution Space

Previous discussions conclude:
Theorem 3: The set of all sequence-pairs is a P-admissible

solution space ofRP. More precisely, it consists of
sequence-pairs, each of which can be mapped to a packing in

time, and at least one of which corresponds to one of
the optimal solutions ofRP.

Our discussion started for minimizing the area of the chip.
However, all the discussions hold as long as the evaluating

(a)

(b)

Fig. 5. Constraint graphsGH (above) andGV (below) (transitive edges are
not drawn for simplicity).

function is independently nondecreasing with respect to the
width and the height of the chip. Therefore, we may assume
instead, for example, perimeter of the chip, area of the chip
of prespecified aspect ratio, and the height of the chip when
its width is fixed. This fact will extend the usefulness of our
solution space.

It has also been assumed that the orientation of each
module (vertically laid or horizontally laid) is fixed. When
the orientation is also requested to be optimized, we hold a
{0,1} sequence of length , expressing the orientation of each
module being horizontal or vertical. The size of the solution
space increases to . (The orientation optimization
for a fixed floorplan is known to be NP-hard [10].) This
technique can be easily extended to so-called “soft” modules,
by preparing three or more candidates of (width, height) pairs
per module [11].

There is a sequence-pair for which another sequence-pair
provides no worse packing, independent of the sizes of the
modules. For example, if corresponds to an
optimal packing, then or also corre-
sponds to an optimal packing, regardless of the widths and the
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Fig. 6. A best packing under the constraint implied by(�+; �
�

)
= (ecadfb; fcbead).

heights of modules and . Then, the former sequence-
pair, , is redundant for our current objective to
find a packing with smaller area. We extend our evaluating
function to consider wires in the next section.

IV. USE OF THESOLUTION SPACE AND EXPERIMENTS

A. Rectangle Packing

To show the usefulness of the proposed solution space,
dimensions of 146 modules were extracted from a printed
circuit board in a personal computer, and packed by standard
simulated annealing method. It uses three kinds of pair-
interchanges: i) two module names in , ii) two module
names both in and , and iii) the width and the height of
a module, where the last one is for orientation optimization.
The initial sequence-pair was made as , which
corresponds to a linear horizontal arrangement of modules.
The temperature was decreased exponentially. From a heuristic
point of view, operation i) was selected with higher probability
in higher temperature, and operation iii) was selected with
higher probability in lower temperature.

The result is shown in Fig. 7. Computation on Sun Sparc-
StationII stopped in 29.9 min reaching the terminating tem-
perature. The algorithm searched at most 606 192 distinct
sequence-pairs out of the solution space of size146
1.23 10 . Notice that, the search of only a fraction about
4.92 of the solution space was enough to obtain the
placement shown in Fig. 7.

As another challenge, we tried 500 modules, using 18.83 h
to get the result shown in Fig. 8.

B. Module Placement with Wires

For VLSI placement, we extend the evaluation to consider
wires. Among various possible evaluations about wires, we
focus on the final chip area after all wires are detailed-routed.

Fig. 7. Packing of 146 modules.

Fig. 8. Packing of 500 modules.

However, it is difficult at this moment and hence we made
use of an estimate of the final chip area without the actual
routing phase.

Let be a sequence-pair, be one of the optimal
packings under the constraint implied by , and
and be the width and the height of. Terminals are given
as fixed points on the boundary of each module. Anet is a set
of terminals (multiterminal net), which must be connected by
wires, later in detailed-routing phase. A set of nets is given as
the netlist . Given terminals of a net, which spread over

, the width and the height of the smallest bounding box of
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these terminals are denoted by and , respectively. is
the sum of wiring width and wiring space (obtained from a
design rule set). We use the following formula proposed in [8]
to estimate the final chip width and height .

The second term of each formula estimates the increase
in one direction owing to the wires, assuming all wires are
uniformly distributed in the final chip. They experimentally
showed that the result is acceptable for a commercial channel
router [8].

There are a total of eight choices per module, which is
the combination of the four choices of 0, 90 , 180 , 270
rotations, and a decision {yes, no} on reflecting the module
about the Y axis. This code for orientation and a sequence-
pair are put together into a simulated annealing process in our
system. The process runs in a similar fashion as the rectangle
packing optimization, and explores the solution space of size

.
A point not mentioned in [8] is how the location of each

individual module is calculated. In our system, after the best
evaluated code is obtained, coordinates of each module are
determined as follows. Assume is the coordinates of
the lower left corner of module in . (This is the information
we can use in this phase.) Let be a set of nets such that
the X coordinate of the left side of bounding box of the net is
less than or equal to . Similarly, is defined using .
We determine the coordinates of the lower left corner
of module in the resultant chip by the following formula:

For an experiment, the biggest building block layout data,
called “ami49,” was taken from the MCNC benchmarks. The
data is the biggest one in their benchmark suit, but our
method was fast enough to handle the data without splitting
the problem. The result is shown in Fig. 9. We remark that
it was done with an additional constraint: aspect ratio ,
taking 7 m. The estimated chip size is 6482m
6925 m. Computation time was 31.36 minutes on SunIPX.
(A recent study [12] also handled the data without dividing
the problem.)

V. CONCLUDING REMARKS

The motivation for this work was our experience that many
VLSI designers are not satisfied with the slicing structure. This
paper introduced a representation of a general packing in terms
of a pair of module name sequences, called sequence-pair.
Detailed proofs are presented to show that every sequence-pair
feasibly corresponds to a packing, and at least one sequence-
pair corresponds to an area-minimum packing.

Fig. 9. Placement of MCNC “ami49”.

In experiments, 500 rectangles were packed very efficiently
in a reasonable time. It was attained by standard simulated an-
nealing in which a move is a change of the sequence-pair. The
evaluating function was then extended to the VLSI placement
problem using a conventional wiring area estimation method
proposed by [8]. The biggest MCNC benchmark, ami49, is
placed promisingly.

New VLSI technologies are offering a sufficient number
of layers for routing to allow enough space for routing to
be done on top of the modules, assuming the use of some
“area router”. This technology trend would bring placement
design still closer to packing, hence make our approach more
significant.

Practical layout in VLSI, PCB, or analog circuit design is
processed under various constraints and different objectives.
For example, wire congestion estimation, timing, power dis-
sipation, clock distribution, crosstalk, are crucial to consider.
To include them in our pure packing algorithm, many studies
on real instances and theories are necessary.

Another our concern is to make the advantages and dis-
advantages of the packing based approach more concrete
compared with the slicing structure based approach. Though
generality is limited, the slicing structure has been known to
have a number of advantages, including safe routing order
[13], and channel definition. It is left for future to include
such properties in the packing based approach.
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