Nios’

Nios Hardware
Development Tutorial

ALTERAW

101 Innovation Drive
San Jose, CA 95134
(408) 544-7000
http://www.altera.com

Document Version: 1.2
Document Date: January 2004

http://www.altera.com

Nios Hardware Development Tutorial Copyright

Copyright © 2004 Altera Corporation. All rights reserved. Altera, The Programmable Solutions Company, the stylized Altera logo,
specific device designations, and all other words and logos that are identified as trademarks and/or service marks are, unless
noted otherwise, the trademarks and service marks of Altera Corporation in the U.S. and other countries. All other product or
service names are the property of their respective holders. Altera products are protected under numerous U.S. and foreign patents
and pending applications, mask work rights, and copyrights. Altera warrants performance of its semiconductor

products to current specifications in accordance with Altera’s standard warranty, but reserves the right to make nsal
changes to any products and services at any time without notice. Altera assumes no responsibility or liability
arising out of the application or use of any information, product, or service described herein except as expressly
agreed to in writing by Altera Corporation. Altera customers are advised to obtain the latest version of device
specifications before relying on any published information and before placing orders for products or services.

LS. EN IS0 5001

i Altera Corporation
TU-NIOSHWDV-1.2

About this Document
ANITERA

®

This tutorial introduces you to the Altera®Nios® system module. It shows
you how to use the Quartus® II software to create and process your own
Nios system module design that interfaces with components provided on
the Nios development board.

Table 1 shows the tutorial revision history.

- Refer to the Nios embedded processor readme file for late-breaking
a ®

information that is not available in this tutorial.

Table 1. Tutorial Revision History
Date Description

January 2004 Reflects updates for Quartus Il software - version 4.0 and
Nios Development Kit version 3.2

July 2003 Reflects new directory structure for SOPC Builder 3.0 and
Nios Development Kit version 3.1.

May 2003 First release of this hardware tutorial for the 1S10, 1C20, and
1S40 Nios development boards.

H ow to Fi nd B The Adobe Acrobat Find feature allows you to search the contents of
- a PDF file. Click the binoculars toolbar icon to open the Find dialog
Information box.
B Bookmarks serve as an additional table of contents.
B Thumbnail icons, which provide miniature previews of each page,

provide a link to the pages.
B Numerous links, shown in green text, allow you to jump to related
information.

Altera Corporation iii

Nios Hardware Development Tutorial About this Document

How to Contact For the most up-to-date information about Altera products, go to the
Altera Altera world-wide web site at http://www.altera.com.

For technical support on this product, go to
http:/ /www.altera.com/mysupport. For additional information about
Altera products, consult the sources shown in Table 2.

Table 2. How to Contact Altera

Information Type USA & Canada All Other Locations

Product literature http://www.altera.com http://www.altera.com

Altera literature services lit_req@altera.com (1) lit_req@altera.com (1)

Non-technical customer (800) 767-3753 (408) 544-7000

service (7:30 a.m. to 5:30 p.m.

Pacific Time)

Technical support (800) 800-EPLD (3753) (408) 544-7000 (1)
(7:30 a.m. to 5:30 p.m. (7:30 a.m. to 5:30 p.m.
Pacific Time) Pacific Time)
http://www.altera.com/mysupport/ http://www.altera.com/mysupport/

FTP site ftp.altera.com ftp.altera.com

Note:
(1) You can also contact your local Altera sales office or sales representative.

iv Altera Corporation

http://www.altera.com
http://www.altera.com/mysupport
http://www.altera.com/mysupport
http://www.altera.com
http://www.altera.com
mailto:lit_req@altera.com
mailto:lit_req@altera.com
http://www.altera.com/mysupport/
http://www.altera.com/mysupport/
ftp.altera.com
ftp.altera.com

About this Document

Nios Hardware Development Tutorial

Typographic
Conventions

This document uses the typographic conventions shown in Table 3.

Table 3. Conventions

Visual Cue

Meaning

Bold Type with Initial
Capital Letters

Command names, dialog box titles, checkbox options, and dialog box options are
shown in bold, initial capital letters. Example: Save As dialog box.

bold type

External timing parameters, directory names, project names, disk drive names,
filenames, filename extensions, and software utility names are shown in bold type.
Examples: fyax, \qdesigns directory, d: drive, chiptrip.gdf file.

Italic Type with Initial
Capital Letters

Document titles are shown in italic type with initial capital letters. Example: AN 75:
High-Speed Board Design.

ltalic type

Internal timing parameters and variables are shown in italic type. Examples: tpj4, n+ 1.
Variable names are enclosed in angle brackets (< >) and shown in italic type. Example:
<file name>, <project name>.pof file.

Initial Capital Letters

Keyboard keys and menu names are shown with initial capital letters. Examples:
Delete key, the Options menu.

“Subheading Title”

References to sections within a document and titles of on-line help topics are shown
in quotation marks. Example: “Typographic Conventions.”

Courier type

Signal and port names are shown in lowercase Courier type. Examples: datal, tdi,
input. Active-low signals are denoted by suffix n, e.g., resetn.

Anything that must be typed exactly as it appears is shown in Courier type. For
example: c:\gdesigns\tutorial\chiptrip.gdf. Also, sections of an actual
file, such as a Report File, references to parts of files (e.g., the AHDL keyword
SUBDESIGN), as well as logic function names (e.g., TRI) are shown in Courier.

1.,2,3.,anda.,b.,c.,..

Numbered steps are used in a list of items when the sequence of the items is
important, such as the steps listed in a procedure.

| Bullets are used in a list of items when the sequence of the items is not important.
v The checkmark indicates a procedure that consists of one step only.

= The hand points to information that requires special attention.

“ The angled arrow indicates you should press the Enter key.

e The feet direct you to more information on a particular topic.

Altera Corporation

Notes:

Table of Contents
A D _b D

®
About thisS DOCUMENTcoooooe e iii
How t0 FINA INFOIMAtION ..ooviiiviiieeeece ettt et eaeeereeeneeene s iii
How to Contact Altera i
Documentation FEEADACKccvivviviiiiiiiiiiierieectiereee ettt ettt et eve e er s ss s s eseeseeaeereeneennen iv
Typographic CONVENTIONSc.ccviiiiiiiiiiiiiiiiicici s v

Tutorial Overview
Introduction
Hardware & Software ReEqUITEMENSccovurueiiiiriiiiiiiie e
TULOTIAL FILES ...evveeeeeeee ettt ettt ettt et et e et e eseeeaeeeaeeateenaeeneeenseensesaseeaeenseen

What This Tutorial Does Not Teach You
Hardware/ Software Development FIOW ..o
Hardware Development FIOW ..o

Designing & Compiling ...
Accessing a Quartus II Project

Create a Nios System Module

Start SOPC BUILAETc.cuiuiiiiiiiiiiiiiiiicc s

System Speed

Add CPU & Peripheralsccccciiiiiiiiiiiiiiiiceiic e

Ni08 32-Bit CPU ...

On-Chip Boot Monitor ROM

Communications UARTccccociiiiiiiiiiiiiiiirsesees s

Seven Segment PIO

External RAM Bus (Avalon Tri-State Bridge) 30

External RAM Interfacecccoovevveeveeveeeeceeeeennen 30

External Flash Interfacec..ccccooevveveennn. 32
Specify Base Addresses ..o, 33

Setting the Flash Base Address 33
Generate the System Module ..o 35
Add the Symbol to the BDFcccccoiiiiiiiiiiic s 38

Altera Corporation vii

Nios Hardware Development Tutorial Table of Contents

Compile the Design
PrOGFAMIMING ..o
Configure the FPGA
Custom Microcontroller —INO Way!cccoviiiiiiiiiiii e 45
Running Software on Your Nios SYStemccccvuviiiiniiciniciccccce e 46
Ni0S SDK Shell TIPSvvurueviirieieiiiieiniccei e 46
Start the NioS SDK SRElc.ooviiiiiiieeceecee ettt 47
Compile & Run the Sample hello_nios.srec Test Programcccccccviiiiiiciiinnnnnn. 48
Download the Design to Flash MEeMOTYcccccoueiiiiiiiiiiniiciccccc e 49
INEXE STEPS et 51
INABX ..ot 53

viii Altera Corporation

Tutorial Overview
A I:I /| D

Introduction

Hardware &
Software
Requirements

Altera Corporation

This tutorial introduces you to hardware development for the Nios
processor and walks you through the hardware development flow. It
shows you how to use SOPC Builder and the Quartus® II software to
create and process your own Nios system design that interfaces with
components provided on your Nios development board.

This tutorial is for users who are new to the Nios processor as well as users
who are new to the concept of using embedded systems in FPGAs. The
tutorial guides you through the steps necessary to create and compile a 32-
bit Nios system design, called nios_system_module. This simple, single-
master Nios system consists of a Nios embedded processor and associated
system peripherals and interconnections for use with the input and
output hardware available on a Nios development board.

When the FPGA device on the Nios development board is configured
with the Quartus II project encapsulating nios_system_module, the
external physical pins on the FPGA are used by the design to connect to
other hardware on the Nios development board, allowing the Nios
embedded processor to interface with RAM, flash memory, LEDs, LCDs,
switches, and buttons.

This tutorial is divided into the following two sections:

B “Designing & Compiling” on page 15 teaches you how to use SOPC
Builder to create the Nios system module in a Block Design File (.bdf)
and how to compile the Nios design using the Quartus Il Compiler.

B “Programming” on page 41 teaches you how to use the Quartus II
Programmer and the ByteBlaster™ II cable to configure the FPGA on
the Nios development board. It also teaches you how to store the
design in the flash memory device provided on the board, so that the
FPGA can be configured with your design whenever power is
applied to the board.

This tutorial requires the following hardware and software:

B A PC running the Windows NT/2000/XP operating system

B Nios embedded processor version 3.02 and the SOPC Builder
software version 2.82 or higher

B The Quartus II software version 2.2 SP1 or higher

Nios Hardware Development Tutorial Tutorial Overview

Tutorial Files

10

B A Nios development board connected to a PC as described in the
Getting Started User Guide provided with the following three kits:

- Nios Development Kit, Stratix Edition
- Nios Development Kit, Stratix Professional Edition
- Nios Development Kit, Cyclone Edition

This tutorial assumes that you create and save your files in a working
directory on the C: drive of your computer. If your working directory is
on another drive, substitute the appropriate drive name.

The Nios embedded processor software installation creates the directories
shown in Table 4 in the \altera\kits\nios directory by default:

Table 4. Directory Structure

Directory Name Description
bin Contains tools required for developing Nios hardware &
software designs, including the GNU tool chain.
components Contains all of the SOPC Builder peripheral components.

Each peripheral has its own subdirectory with a class.ptf file
that describes the component.

documents Contains documentation for the Nios embedded processor
software, Nios development board, and GNUPro Toolkit.
examples Contains subdirectories of Nios sample designs, including

the standard_32 project on which the
nios_system_module design is based.

tutorials Contains tutorials with their related files for the Nios
embedded processor and SOPC Builder. The directory for
this tutorial is found in each of the following kit-specific
directories:

(1) Nios_HW_Tutorial_Stratix_1S10

(2) Nios_HW _Tutorial_Cyclone_1C20

(3) Nios_HW _Tutorial_Stratix_1S40

What This Tutorial Does Not Teach You

This tutorial starts from a pre-defined Quartus II project with components
chosen, pins and other logic placed and then wired to the pins. As such, it
does not teach you how to create a Quartus II project, how to set
compilation settings, or how to place and assign pins.

See http://www.altera.com/literature/lit-qts.html for more information
about Quartus II software.

Altera Corporation

Tutorial Overview

Nios Hardware Development Tutorial

Hardware/
Software
Development
Flow

Figure 1 shows a complete design flow for creating a Nios system and
prototyping it on the Nios development board. The diagram includes both
the hardware and software design tasks required to create a working
system. The right side shows the software development flow while the left
side shows the hardware design flow. This tutorial walks you through the
steps “Hardware Development” and “Hardware Prototype on the
Development Board” shown in Figure 1.

Refer to the Nios Software Development Tutorial for a complete explanation
of the software flow.

Figure 1. Hardware/Software Development Flow for a Nios Processor System

Step 1: Predesign Activity
® Analyze System Requirements (Performance & Throughput)
® Define Nios Processor Subsystem (CPU, Peripherals, Memory Structure, DMA Channels, etc.)

! ! —

Standard System Hardware Development Softw:
Components BRI S € Software Libraries
o UART Step 2:
. ho Define Nios Processor R Begin C/C++ Development J
DMA System Module with SOPC. > i

e el Builder

User-Defined B i
Components Step 5: \ £ 13| Develop Drivers & Routines | |«
& e eriheral Assign Device, Layout Pins & ® Memory Map ; for Custom Hardware
ustom Periphera’s Compile Hardware with the ® IRGs ;
® Custom Instructions Quartus Il Software H ® Routines for i —

Step 3:

Custom SDK 08 Kernel

Standard Peripherals

Step 4:

Create Custom

Hardware

i Step 4: —
stepe: | [A | Compile & Link, Targeting ~
Hardware Prototype on | —p| Software Prototype on | Custom Hardware Platform <> fDn\(/:eyst& R:u"n?‘s ‘
D: Board o! Board for Custom Peripherals
A -
< No Does System No
<« Meet Goals?
Yes
Step 7:

Successful Prototype of
Nios System Module

Altera Corporation

Figure 1 shows where the hardware and software flows intersect. To
obtain a complete, working system, it is important to know what each side
must provide for the other. Even if your development involves separate
teams for hardware and software design, it is helpful to understand the
design flow on both sides of the hardware-software divide.

The development flow begins with predesign activity (step 1 in Figure 1),
which includes an analysis of the system requirements:

B What computational performance does the design require?
B How much bandwidth or throughput must the system handle?

Based on the answers to these questions, you can determine the concrete
system requirements:

1

Nios Hardware Development Tutorial Tutorial Overview

12

B Will the CPU need a hardware-accelerated multiplier?

B Which peripherals, and how many of each, does the design require?

B Could DMA channels be used to free up CPU cycles spent copying
data?

These decisions involve both the hardware and software teams.

Hardware Development Flow

The hardware design process begins by using the SOPC Builder system
integration software to choose the appropriate CPU, memory, and
peripheral components such as on-chip memory, PIOs, UARTs, and off-
chip memory interfaces and then customize their functionality (step 2 in
Figure 1). SOPC Builder allows you to easily connect custom hardware
components to your system, giving you powerful options to accelerate
system performance. SOPC Builder takes this information and
automatically integrates the system, outputting HDL files that describe
the system hardware. SOPC Builder also generates a software
development kit (SDK) that forms the foundation for software
development for your custom Nios processor system (step 3 in Figure 1).
The SDK can be used immediately to begin developing embedded
software for the custom hardware.

You can create a custom instruction by designing hardware blocks that
connect directly to the Nios CPU’s arithmetic logic unit (ALU).
Alternately, you can create a custom peripheral designed specifically for
a critical computation or data movement task (step 4 in Figure 1).

Next, you use the Quartus Il software to target a specific Altera device and
place-and-route the HDL design files generated by SOPC Builder. Using
the Quartus II software, you choose the target Altera FPGA device, assign
pin locations to the various I/O ports on the Nios system, and apply any
hardware compilation options and/or timing constraints (step 5 in
Figure 1). During compilation, Quartus Il integrated synthesis generates a
netlist from the HDL source files, and the Quartus II fitter fits the netlist
into the target device. Finally, Quartus II generates a device configuration
file to configure the FPGA.

Using the Quartus Il programmer and an Altera download cable, you then
download the configuration file (hardware image for your custom Nios
processor system) into the development board (step 6 in Figure 1). After
verifying that the design works in hardware, the new hardware image can
be programmed into nonvolatile memory on the development board.
After the board is programmed, the software team is ready to begin using
the board as a prototype platform to verify software functionality on the
processor hardware.

Altera Corporation

Tutorial Overview

Nios Hardware Development Tutorial

Altera Corporation

You now have a successful prototype of a Nios processor system running
on the Nios development board (step 7 in Figure 1). Most hardware
design flows will continue and integrate the HDL from SOPC Builder into
a larger, single-chip SOPC design. The designer's preferred synthesis tool
can then synthesize the complete design and the Quartus II software will
place-and-route the netlist into a target device. The overall logic design
can be prototyped on the Nios development board or, the design can be
migrated to the designer’s custom hardware system.

13

Notes:

Desiani .
A I:l -E D)/A esigning & Compiling

®

Accessing a
Quartus Il
Project

Altera Corporation

This tutorial guides you through the steps required to create and
instantiate the Nios system module using the SOPC Builder software.

To use the instructions in this section you need to be familiar
with the Quartus II software interface, specifically the toolbars.
Refer to the Quartus II help system for more information about
using the Quartus II software.

To begin, you must open the specific Quartus II project for the Nios
development board you are using. To start the Quartus II software and
create a new project, perform the following steps:

1.

Choose Programs > Altera > Quartus II <version> (Windows Start
menu).

Choose Open Project (File menu).
Browse to the tutorials directory for your board.

Throughout this tutorial, we refer to the tutorial directory for your
board as <board specific tutorial>. Each of the board-specific tutorials
are found in the following directory: c:\altera\kits\nios\tutorials\
<board specific tutorial>. Below are the names of the board-specific
tutorial directories:

— Stratix 1510 board—\Nios_ HW_Tutorial_Stratix_1S10
— Cyclone 1C20 board—\Nios_HW_Tutorial_Cyclone_1C20
— Stratix 1540 board—\Nios_ HW_Tutorial_Stratix_1S40

Choose the .quartus file nios_system_module and click Open.

The Quartus project will open with a block design file (BDF)
showing unconnected named pin as shown in Figure 2.

Stratix 1510 board users only: Early shipments of the board used ES
(engineering sample) devices. Device configuration files for ES and
non-ES devices are not compatible. The files for this tutorial use the
non-ES device by default.

15

Nios Hardware Development Tutorial Designing & Compiling

a. If the Stratix device on your board is labeled "EP1S10F780C6ES",
then it is an ES device, and you must retarget the Quartus II
design for the ES part number. Select Device... (Assignments
menu) to change the device settings to the EP1S10F780C6ES.

b. If the device on your board is labeled "EP1510F780C6" (no "ES"),
then do not change the device settings. Starting with the Nios
processor version 3.1, August 2003, the board ships with a non-
ES device, and works as-is with the tutorial files.

Figure 2. Quartus Il Project Block Design File
¥ Quartus I - C:\aleralexcaliburlsope_builder\tutorials\Nios HW Tutorial Stratix_1540%nios_system madule - [nies_system_module. hdf]
P e S o Brot fpgpeels Prooeseg Jok Windm Hep

DEFd & e e EED &8 660
HOUPRE ¢6¢09 /inda B

1%
Al
g J— .
e ——
i
Ll
1y
=
@
o
"
EERC L B = T 3
ol
ol
N) [I ARRRER
™
\comple T T | ¢ 3
Cre ate a NiOS This section describes how to use SOPC Builder to create the Nios

embedded processor, configure system peripherals, and connect these

SVStem MOd u I e elements to make a Nios system. Next, you will connect the Nios system
ports to the FPGA device pins (represented in the BDF) that correspond to
the physical FPGA pins connected to hardware components on the Nios
development board.

This section includes the following steps:

1. “Start SOPC Builder” on page 17.

16 Altera Corporation

Designing & Compiling

Nios Hardware Development Tutorial

Altera Corporation

2. “Add CPU & Peripherals” on page 19.
3. “Specify Base Addresses” on page 33.
4. “Generate the System Module” on page 35.

5. “Add the Symbol to the BDF” on page 38.

Start SOPC Builder

SOPC Builder is a software tool that allows you to create a full functioning
custom embedded microcontroller called the Nios system module. A
complete Nios system module contains a Nios embedded processor and
its associated system peripherals. SOPC Builder allows you to easily and
quickly create a multi-master system module (masters, slaves, bus
arbitration logic, etc.) that is wired up and ready to use in Altera FPGAs.

SOPC Builder prompts you to select parameter settings and optional ports
and peripherals. Once SOPC Builder generates the Nios system module,
you instantiate it in the design file.

Follow these steps to start SOPC Builder:

1. In the Quartus II software, choose SOPC Builder (Tools menu).
SOPC Builder starts, displaying the Create New System dialog box.

2. Typenios32 in the System Name field (Figure 3) and under HDL
Language choose Verilog or VHDL.

1= SOPC Builder generates plain text Verilog HDL or VHDL for all
of its native components depending on which language you
choose in this step.

Figure 3. Create New System Dialog Box

q» Create New System

System Mame: |nio=: 32

HDL Language

 eriog & WHBL}

3. Click OK. The Altera SOPC Builder - nios32 window appears and

the System Contents tab is displayed.

17

Nios Hardware Development Tutorial

Designing & Compiling

You are now ready to add the Nios CPU and peripherals to your system.
You will be populating the SOPC Builder table with the components that
go into your final microcontroller system. Figure 4 on page 18 shows the
SOPC Builder System Contents tab and SOPC Builder table for nios32.

For more information on the SOPC Builder, refer to the SOPC Builder Data

C J
“ Sheet.

Figure 4. SOPC Builder System Contents Page

System Contents page

Module pool

Memory map address

Module name & description & IRQ information

System clock frequency

1 Altera SOPC Builder - i

riertace o User Logic e
© Awalon Modules [

M Heme i Dracripton T Bwe | &d [mg|

& Mios Processor - Afer Corme
¥ Bridges
1 Commanication
+ EP1CED tos Development Bo
1 EP1510 Hios Devebopment 0o
EP1540 Hios Development 0o
+1 LPZORINOE Wsos Development
1 Ethernet
+ Muth Coprocessors

(available
components)

Add button

4 Memory
+ oaar
+ PGl
T ki Module table
+usn
5 uP KnarTaces
= AHB Modules
& AFM-Based Excaltur Sipe
2 APE Bus Master iiderlace - E
& AME Bus Save rerfece - By

Al Awaliabla Compa |

ST

—— & |

12 o chacking for updates,

Messages

Ext Hext »

18

System Speed

Before adding any peripherals, enter 50MHz in System Clock Frequency
found at the top of the SOPC Builder page as shown in Figure 4. This value
is used to achieve accurate timing in both hardware generation and
software SDKs. It is critical that this clock frequency matches the
frequency going into the Nios system module.

Altera Corporation

Designing & Compiling

Nios Hardware Development Tutorial

Altera Corporation

I For this tutorial, we are simply using the clock input from
the 50MHz oscillator on the board. However, if a PLL is
used to change this frequency, or an external clock input is
used, then the frequency going into the system module
should be entered into System Clock Frequency.

Add CPU & Peripherals

The Nios system peripherals allow the Nios embedded processor to
connect and communicate with internal logic in the FPGA, or external
hardware on the Nios development board. Use SOPC Builder to specify
the name, type, memory map addresses, and interrupts of the system
peripherals for your Nios system module.

L=~ The following specifications ensure that the
nios_system_module design functions correctly on the Nios
development board, and allow you to run the software examples
provided in your project’s software development kit (SDK)
directory.

You will add the following modules to the SOPC Builder:

Nios 32-Bit CPU

On-Chip Boot Monitor ROM
Communications UART
Timer

Button PIO

LCD PIO

LED PIO

Seven Segment PIO

External RAM Bus (Avalon Tri-State Bridge)
External RAM Interface
External Flash Interface

The Cyclone development board example in Figure 5 on page 20 and
Figure 6 on page 20 shows you the components you will be adding to
SOPC Builder to create the Nios system design in this tutorial. In Figure 5
on page 20 and Figure 6 on page 20, the SOPC Builder component module
names are called out in parentheses.

See the Nios Development Board Reference Manual for more detailed board
component information.

The components you will be adding are located in the module pool

located on the left-hand side of the System Contents tab in the Altera
SOPC Builder - nios32 window. See Figure 4 on page 18.

19

http:www.altera.com/literature/ds/ds_nios_devboard.pdf

Nios Hardware Development Tutorial Designing & Compiling

Figure 5. Nios Development Board
Serial port connector (uart1)

JTAG \

1Nat1SCS |
S51-4013

Flash
(ext_flash)

LEDs (led_pio) ~ Push-button switches Display Connection for the - External SRAM (ext_ram)
B (button_pio) (seven_seg_pio) LCD module

Figure 6. LCD Board

LCD (led_pio)

20 Altera Corporation

Designing & Compiling

Nios Hardware Development Tutorial

Altera Corporation

Nios 32-Bit CPU

To add the Nios 32-bit CPU, named cpu, to the nios32 system, perform
the following steps:

1.

2.

Under Avalon Modules, Select Nios Processor.

Click Add. The Nios configuration wizard titled Altera Nios 3.0 -

nios_0 displays.

Specify the following options in the Architecture tab (see Figure 7):

— Processor Architecture: Nios-32

— Preset Configurations: Standard features/Average LE usage

Selecting these configuration options automatically sets the

options in the remaining Nios wizard tabs. If you want to
view these options or to customize the settings, turn on the

Enable advanced configuration controls option. For this

tutorial, the default configuration is acceptable.

Figure 7. Nios CPU Architecture Tab

1™ Altera Nios 3.2 - nios_0

Processor Architecture

" Mios-16 &+ Mins-32

32-hit ALU, registers, and data bus
32-bit addressing (maximurm).
Programmers Reterence Manusl

Configuration Cptions

Preset Configurations: |Standard festures f Average LE usagej
[~ Enable advanced configuration controls

[~ Smart Regeneration

Cancel | ‘ | Finizh |

4.

5.

Click Finish. You are returned to the Altera SOPC Builder - nios32

window.

Right-click nios_0 under Module Name.

21

Nios Hardware Development Tutorial

Designing & Compiling

6. Choose Rename from the pop-up menu.

7. Rename nios_0 as cpu. Press return when you are finished typing
the new name to save your setting. See Figure 8.

A Some of the peripherals in this tutorial MUST be renamed with

the EXACT name provided. Because renaming a few of the

peripherals is critical for successful tutorial completion, you will

rename all the peripherals to avoid potential difficulties.

When designing your own Nios system, it is not necessary for you to
rename peripherals, but helpful as a method for quickly identifying
problem occurrences based on the peripheral’s name. Also, assigning
meaningful names helps the user understand the memory map
peripheral-related problems during software development.

Figure 8. SOPC Builder with CPU

P Altera SOPC Builder - nios32

File System Module Wiew Help

I System Contents | Nios More "cpu’ Settings | System Generation |

< o

=-a

=I-Al

ftera SOPC Builder

@ Interface to User Logic

valon Modules

5 Bridges

£ Communication

¥ EP1C20 Hios Development Bo

r] EP1S10 Hios Development Bo:

r] EP1S40 Hios Development Bo:

« EP20K200E Hios Development

£ Ethernet

£ Math Copracessors

£ Memory

£l Other

5-PCl

5 Peripherals

o USB

£ uP Interfaces

HB Modules
@ ARM Eased Excaliour Stripe
© AHE Bus Master Intertace - £
© AHE Bus Slave Interface - Eu

7| Bridges

£ Ethernet

o PC1

4 |

Al Available Components
o | ® | &[] O

5| Peripherals

i3]

At

B check

System Clock Frequency. |0 MHz

Mociule Name: | Description |
JFios Frocessor - Aliera Corporation I I =

Move Up Move Down

V[E5 cpu: Unspecified Reset Location, vector Tabls (256 bytes), Program Memory, Data Memory

71 cpufdata_master requires a slave of bype avalon.Please add a slave of type avalon

) cpufinstruction_master requires s slave of bype avalon.Fleass add a slave of type avalon.
+) Done checking for updates.

Mot =

22

You will see errors in the SOPC Builder message display (Figure 8). The
issues causing the errors to appear after adding the Nios CPU are resolved
when the rest of the elements are added to the design. At this stage these
error messages can be safely ignored.

Altera Corporation

Designing & Compiling

Nios Hardware Development Tutorial

Altera Corporation

On-Chip Boot Monitor ROM

To add the boot monitor ROM peripheral, boot_monitor_rom, perform

the following steps:

1. Select On-Chip Memory (RAM or ROM) under Memory and click

Add. The On-chip Memory - onchip_memory_0 wizard displays.

2. Specify the following options in the Attributes tab (see Figure 9):

— Memory Type: ROM (read-only)

- Block Type: Automatic

— Data Width: 32

— Total Memory Size: 2 KBytes

1= After specifying these attributes, a warning that the ROM is

empty will be displayed in the bottom of the On-chip
Memory - onchip_memory_0 wizard. This is resolved in

Steps 4.

3. Click the Contents tab.

4. Select the GERMS Monitor option (see Figure 9).

The GERMS monitor is a simple boot monitor program that

allows you to look at memory and communicate with the

processor on boot up. This will be explored later in this

tutorial. You can find more information in the Nios Software
Development Reference Manual.

Figure 9. Boot Monitor ROM Wizard Settings

" On-chip Memory - onchip_memory_0 E‘
Attributes | Contents |

Memory Type

7 RAM (writeable)

I~ Dusl-Part Access
Block Type: [Sutomatic =
Size

Ditar Wiicth: 32 7| bits

Total Memory Size: 2 koytes ~

4 On-chip Memory - onchip_memory_0 3]

Attributes Contents

 Blank

 BERME Moniior (requires Nios master, ~1.5K footprint§

 Testcade

 Build: |
O File: |

" Command: |

Automatically choosing M4K blocks
ROM is blank and read only.

cancel | | met= | s

’E) Automatically choosing MAK blacks

Cancel < Prev Finish

5. Click Finish. You are returned to the Altera SOPC Builder - nios32

window.

23

Nios Hardware Development Tutorial Designing & Compiling

6. Rename onchip_memory_0 to boot ROM. See Steps 5-7 on page
21.

Communications UART

This Nios design includes one UART peripheral for output from the
processor. To add the communications UART peripheral, uartl, perform
the following steps:

1. Select UART (RS-232 serial port) under Communication and click
Add. The Avalon UART - uart_0 wizard displays.

2. Specify these options in the Configuration tab (see Figure 10):

— Baud Rate (bps): 115200
— Parity: None

— Data Bits: 8

— Stop Bits: 1

3. Click the Simulation tab.
4. Select the accelerated (use divisor = 2) option (see Figure 10).

=" UARTS run slowly compared to the typical Nios system
clock speed. Even at 115,200 baud, simulating sending or
receiving a single character to a UART takes a long time. The
UART peripheral has an option, accelerated (use
divisor = 2), that allows you to simulate UART transactions
as if the baud rate was 1/2 the system clock speed (making
much faster simulation times).

24 Altera Corporation

Designing & Compiling

Nios Hardware Development Tutorial

Altera Corporation

Figure 10. Communications UART Wizard Settings

Baud Rate

Baud Rate (bps): [115200 ~
Input Clack Frecuency (MHz): 50
Baud error: <0.01%

[~ Baud raie can be changed by softwars
(dlivisor register is writeable)

parity data bits stop hits

Flaw Control

I Include CTSIRTS pins and control register bits

Streaming Data (DMA) control

[~ Include end-of-packet register

Cancel Hext =

Finish

Configuration Sunu\atmnl
Simulsted RXD-input character stream

Prepare Interactive Yindows

Simulated transmitter Baud Rate

¢ actual (use trus baud divisor)

[~ Creste Modelsim Alias to open streaming output window

[~ Create Modelsim Alias to open interactive stimulus window

Cancel = Prev

Firish

Click Finish. You are returned to the Altera SOPC Builder - nios32

Rename uart_0 to uartl. See Steps 5-7 on page 21.

1.

window.
2.
Timer

Like the Nios CPU, the timer peripheral has several preset configurations
that trade off between logic element (LE) usage and configurability. For

example, a simple interval timer uses few LEs, but it is not configurable.
In contrast, the full-featured timer is configurable, but uses more LEs. You

can use one of the preset configurations or make your own custom

settings.

To add the timer peripheral, timerl, perform the following steps:

1.

Select Interval timer under Other and click Add. The Avalon Timer
- timer_0 wizard displays.

Specify the following options (see Figure 11):

— Initial Period under Timeout Period: 1 msec
— Preset Configurations: Full-featured (v1.0-compatible)

25

Nios Hardware Development Tutorial

26

Figure 11. Timer Wizard Settings

‘) Avalon Timer - timer_0' E

Tineout Period
Initial Period 1| msee =

Imput Clock Frequency: S0 MHz
Harchware Options

Preset Configurations: |Full-festursd (v1 D-compatible) _~

Registers

[V Vititeable period

I Readable snapshot

Iv StartiStop cortrol bits

Cutput Signals

[Timeout pulse (1 clock wide)

[System reset ontimeout (Watchdog)

Cancel | ‘ ‘ Finish

Designing & Compiling

3. Click Finish. You are returned to the Altera SOPC Builder - nios32

window.
4. Rename timer_0 to timerl. See Steps 5-7 on page 21.

A The timer software library subroutines rely on a timer named

timerl. If you do not use the name timer1, these routines will not

be compiled into the library.

Button PIO

To provide an interface for the buttons on the Nios development board,

add the button PIO peripheral, button_pio, by performing the following

steps:

1. Select PIO (Parallel I/0) under Other and click Add. The Avalon
PIO - pio_0 wizard displays.

2. Specify the following options (see Figure 12):

— Width: 4 bits
— Direction: Input ports only

When you select the Input ports only option, the Input Options tabs

is enabled.
3. Click the Input Options tab.

4. Turn on Synchronously capture under Edge Capture Register.

Altera Corporation

Designing & Compiling Nios Hardware Development Tutorial

5. Select Either Edge.
6. Turn on Generate IRQ under Interrupt.

7. Select Edge.

Figure 12. Button PIO Wizard Settings

Basic Sattings] Input Options | Basic Settings Input Options }
Width Edlge Capture Redister
[¥ Synchronausly capture:
4 bits el BET
(" Rising Edge
PIO wickh must be between 1 and 32 bits
¢ Faling Edge
Direction
(= Either Edge
© Bidirectional (tri-stats) ports (i it
- v Generate IRG
" Level
" Both input and output ports
~
Ouitput ports anky & B

Interrugt CPU when any unmasked kit in
the edge-capture register is logic-trus

Cancel ‘ ‘ hext = ‘ Finish Cancel | < Prev Fittish

8. Click Finish. You are returned to the Altera SOPC Builder - nios32
window.

9. Rename pio_0 to button_pio. See Steps 5-7 on page 21.

LCD PIO

To provide an interface to the LCD panel, add the LCD PIO peripheral,
led_pio, by performing the following steps:

1. Select PIO (Parallel I/0) under Other and click Add. The Avalon
PIO - pio_0 wizard displays.

2. Specify the following options (see Figure 13):

- Width: 11 bits
— Direction: Bidirectional (tri-state) ports

The LCD module that comes with the Nios development kit can be

written to and read from. Therefore, the LCD PIO uses bidirectional
pins.

Altera Corporation 27

Nios Hardware Development Tutorial Designing & Compiling

Figure 13. LCD PIO Wizard Settings

& Avalon PIO - pio_0 9

Basic Settings } Input Options |
Width

[T bits

PIC wicth must be between 1 and 32 bits.

Direction

(=" Bidirectional (tri-state) ports
 Input ports only
" Both input and output parts

" Qutput ports onty

Cancel | | Nest = ‘ Finish

3. Leave the settings in the Input Options tab at the defaults.

4. Click Finish. You are returned to the Altera SOPC Builder - nios32
window.

5. Rename pio_0 to led_pio. See Steps 5-7 on page 21.

LED PIO

To provide an interface for the LEDs on the Nios development board, add
the LED PIO peripheral, led_pio, by performing the following steps:

1. Select PIO (Parallel I/0) under Other and click Add. The Avalon
PIO - pio_0 wizard displays.

2. Specify the following options (see Figure 14):

— Width: 8 bits
— Direction: Output ports only

In this tutorial, the LED PIO uses outputs only and has an
inverter between the system module and the pins that are
connected to the LEDs. Therefore, when the tutorial design is
downloaded to the FPGA, the LEDs are illuminated, indicating
that the correct design is running on the board.

28 Altera Corporation

Designing & Compiling

Nios Hardware Development Tutorial

Figure 14. LED PIO Wizard

[|

I

& btz
PIO) wicth must be betwesn 1 and 32 bits

Direction

" Bicirectional tri-state) ports
7 Input ports only
© Both input and output ports

% Qutput parts only

Cancel ‘ ‘ ‘ Finish

3. Click Finish. You are returned to the Altera SOPC Builder - nios32
window.

4. Rename pio_0 to led_pio. See Steps 5-7 on page 21.

Seven Segment P10

To add the seven segment PIO peripheral, seven_seg_pio, perform the
following steps:

1.

Altera Corporation

Select PIO (Parallel I/O) under Other and click Add. The Avalon
PIO - pio_0 wizard displays.

Specify the following options:

- Width: 16 bits
— Direction: Output ports only

Click Finish. You are returned to the Altera SOPC Builder - nios32
window.

Rename pio_0 to seven_seg_pio. See Steps 5-7 on page 21.

29

Nios Hardware Development Tutorial Designing & Compiling

External RAM Bus (Avalon Tri-State Bridge)

SOPC Builder uses the Avalon interface to connect on-chip components
with Avalon master or slave ports. For example, the Nios CPU has an
Avalon master port and the UART component has an Avalon slave port.
For the Nios system to communicate with memory external to the FPGA
on the Nios development board, you must add a bridge between the
Avalon bus (the local connection interface for SOPC Builder-generated
systems) and the bus or buses to which the external memory is connected.

To add the Avalon tri-state bridge, ext_Shared_Bus, perform the
following steps:

1. Select Avalon Tri-State Bridge under Bridges and click Add. The
Avalon Tri-State Bridge - tri_state_bridge_0 wizard displays. See
Figure 15. The Registered option is turned on by default.

Figure 15. Avalon Tri-State Bridge Wizard

') Avalon Tri-State Bridge - tri_state_bridge 0 E]

Incoming Signals
= Registered
Increazes off-chip Frax, but also increases lstency
" Mot registered

Outgoing address and control signals are always redistered

Cancel | ‘ ‘ Einish |

2. Click Finish. You are returned to the Altera SOPC Builder - nios32
window.

3. Rename tri_state_bridge_0 to Ext_Shared_Bus. See Steps 5-7 on
page 21.

External RAM Interface

The development board choices in SOPC Builder include interface
selections for various components included on the development board.
One of the board interface selections is memory devices. You will now
choose the memory device for your board. To add the external RAM
peripheral, SRAM_1MByte, perform the following steps:

1. Click the “+” next to your development board from the choice of

development boards in the System Contents tab and select the
SRAM component for your board as shown below:

30 Altera Corporation

Designing & Compiling

Nios Hardware Development Tutorial

Altera Corporation

— Stratix 1510 board: IDT71V416 SRAM
— Stratix 1C20 board: IDT71V416 SRAM
— Stratix 1540 board: IDT71V416 SRAM

2. Click Add. The SRAM (two IDT71V416 chips) -
nios_dev_board_sram32... wizard displays.

3. In the Attributes tab, make sure the memory size is set at 1024 kb

(Figure 16).
4. Click the Simulation tab.

5. Select Build.

& Thebuild option specifies a Nios program that will
automatically compile when you generate your system.

6. Click the Browse (...) button.

7. Select the hello_world.c file, and click Open (see Figure 16).

I

The purpose of this step is to show you how easily you can add

a program file that you want to simulate running on your Nios

system. By adding your .c file here, SOPC Builder will take care
of creating the test bench needed to watch an executing software
program in hardware simulation.

See AN 189: Simulating Nios Embedded Processor Designs for more

information.

Figure 16. External RAM Wizard Settings

b SRAM (two IDTZ1¥016 chips) - sram_0 [X) [l < sram (two IDT71¥016 chips) - sram_0. X

EA'E'E"iE‘th“;ﬂ Simulatian |
Static RAM
The Nios Development Boards(Stratix 1510, 1540 and Cyclone 1C20

editions) | have two IDT71%416 SRAM chips arranged as 256k
32-bit words (1MByte total address span)

Attributes Simulation |
" Do hot Create Simulation Model
" Blank

" GERMS Manitor

& Buid: |rello_worl o

Memary Size: ‘ 1024 kB - = -
 Filer |
18 Word Aligned Address Bits
 Command: |
Cancel Next = Finish Cancel < Prev Finish

31

Nios Hardware Development Tutorial

Designing & Compiling

32

8. Click Finish. You are returned to the Altera SOPC Builder - nios32

window.

9. Rename sram_0 to SRAM_1MByte. See Steps 5-7 on page 21.

External Flash Interface

To add the external flash peripheral, Flash_8MByte, perform the

following steps:

1. Click the “+” next to the development board you have and then
select the external flash peripheral for your development board as

shown below.

Stratix 1510 board: AMD29LV065D flash

Cyclone 1C20 board: AMD29LV065D flash

Stratix 1540 board: AMD29LV065D flash

Click Add and the 8Mbyte Flash Memory -

amd_avalon_am29LV065d_flash_0 wizard displays.

down list box (Figure 17).

Choose 23 address bits / 8 data bits from the Address/Data drop-

Figure 17. External Flash Wizard

" BMByte Flash Memory - amd_avalon_am29Iv06... E‘

Att"bum ‘ Simulation ‘

Size:

The Nios Development Boards (Stratix 1510, 1540 and Cyclone 1020
ecltions) have an AMD 230063 flash memory connected with

an &-bit data bus. This companent wizard supports similar
configurations of 28LY-famly flash metmories.

AddressData; |23 address bits /8 data bits 7| bits

Cancel |

| Hext = | Finish ‘

window.

Steps 5-7 on page 21.

Click Finish. You are returned to the Altera SOPC Builder - nios32

Rename amd_avalon_amLV065d_flash_0 to Flash_8MByte. See

Altera Corporation

Designing & Compiling

Nios Hardware Development Tutorial

Altera Corporation

You are finished adding peripherals. In the remaining Design Entry
sections, you will set options in SOPC Builder.

Specify Base Addresses

SOPC Builder assigns default base address values for the components in
your Nios system module. However, you can modify these defaults. For
this tutorial, you will set and lock the Flash base address to 0 but allow
SOPC Builder to change the other addresses.

This tutorial sets the base address of the Flash to 0x0000 to make it simple
to talk about hardware and software configurations stored at certain
address locations in the Flash memory, without worrying about offsets.

Setting the Flash Base Address

To set the Flash base address, do the following.

1. In the SOPC Builder module table, click on the Base for the
Flash_8MByte peripheral, type 0x0 and press Enter.

Errors will appear in the SOPC Builder message area because the
new Flash base address has conflicts with another peripheral’s base
address. This is resolved in Steps 3.

—
A
Q)

Verify Flash is selected in the SOPC Builder Module table. The
Flash peripheral will be highlighted.

2. Choose Lock Base Address (Module menu). A padlock icon appears
next to the Flash Base Address.

3. Choose Auto Assign Base Address (System menu). Auto Assign
Base Address causes SOPC Builder to reassign base addresses for
any unlocked address to avoid address map conflicts. The errors that
occurred in Steps 1 should now be resolved and no errors should
appear in the message area. Figure 18 shows the completed system
with its address map.

33

Nios Hardware Development Tutorial Designing & Compiling

Figure 18. Final System with Address Map& Nios System Settings

<@ Altera SOPC Builder - nios32
File System Module Wiew Help

System Confents] Nigs More "cpu’ Settings | System Generation |

<) Attera SOPC Builder =1 System Clock Frequency: |50 MHz
@ Interface to User Logic
= Avalon Modules

Mosiule Mame: Description Base Eng IRQ

@ hios Processor - Aftera Co [Mios Processor - afiera Corporation
i Bridges -G Weimary (R o1 oWy T Gwe03T00T8 | CRUGSOTET |
@ Avalon To AHB Bridige DART (RS-233 serial porl) 0x00900500] x00SD0S1F| 16 |
@ avsion Tr State Eriaa BG0S055F | 17
4-Communication FIG (Pavalel 157 C0S005 9| 78
+1-EP1G20 Hios Development FID (Paraliel 110) 0x00000850 0x0000085F | |
4 EP1510 Hios Development FiG (Faralel 1) 00900560 C000055F |
=1 EP1S: nt FIS (Par allel 11G) 0x00900670 0x0000067F | |
s Avalon Tri-State Bridge |
VAT SRAN
L@ LANSTCT 11 inferface Flash_tMByte WD Z6LV0BED Flash @ 0-000000..| Ox007FFFFF
1 EP20K200E Hios Developm:
o Etnernot
4 Math Coprocessors
S Mooy
i other ;
oo Verify the Base

s
b Address & IRQ
ea = .
2 Perpherss Settings
b s
- @ ARM-Based Excalibur Strij
i

«

Al Available Companents
o[®] ¥ o
Add B check Move Up vove Down

(=) cpu; defaulting Reset Lacation to boot_ROM ;Primary Serial Part (printf, GERMS), Auliary Serial Port to uartl ;Vector Table (256 bytes), Program Memary, Data Memary to Flash_8MByte
(2} Done checking for updates

Exit = et > Cenerste

After you add the components to the system module, you must make the
following system settings.

1. Click the Nios More “cpu” Settings tab. The text in quotation marks
is the name of the Nios CPU module, which in this example is cpu.

2. Make the following settings under Nios System Settings see
Figure 19 on page 35):

— Reset Location
- Module: boot_ROM
- Offset: 0x0
- Vector Table (256 bytes)
- Module: SRAM_1MByte
- Offset: 0x000FFF00
— Program Memory
- Module: SRAM_1MByte
— Data Memory
- Module: SRAM_1MByte
— Primary Serial Port (printf, GERMS)
- Module: uartl
- Auxiliary Serial Port
- Module: uartl
— System Boot ID: Nios HW Tutorial

34 Altera Corporation

Designing & Compiling

Nios Hardware Development Tutorial

I'=" For the System Boot ID, specify any 25-character string you
prefer. This text is sent over the UART by the Nios CPU on

boot-up.

3. Under Software Components make sure none of the options are
selected. The other software components are not used in this tutorial.

Figure 19. SOPC Builder More ‘cpu’ Settings Tab

¥ Altora SOPC Bulldor - nfos37 [91=1(]

Fie System Modie Wew el

System Corkants | NIos tomm “cus Smttirngs | System Generation |

Hioa Sysbem Settings

/oA B0 ¥ ooe T T

Saftware Comporerts

vector |nble (250 trtes) [aRAM_tMinte
Prcwram brrmary [ERAM_ MBI
Ciata Memory [ERAM_tmEnyte
Prarary oeial Pl (i, GERME) paarl |
[Ausciiary Serial Port Juartt

Otfset | Adoress

CECOU0F 1 00 OO0 00 |

DOAGEDD |
diacodod |

{25 chars max)

e | asn

Bl Avera Flugs TSP Netwaeking Liary

Dscripion
Lightwisight, RIS dspdridant rbwonk

[} Do checking for updates.

(1) e doboulling Prisary Seelal Mot (e, GERMS), Ausliary Serial Port bo uart)

Altera Corporation

Generate the System Module

To make your Nios design a part of the Quartus II project that will be
compiled for the FPGA device on the development board, you must first

generate the design logic.
To generate the design, perform the following steps:
1. Click the System Generation tab if you have not already.

2. Make the following settings under Options in the System
Generation tab (See Figure 20):

— SDK: Turn on

35

Nios Hardware Development Tutorial Designing & Compiling

For more information on the files that are generated in the
SDK, refer to the Nios Embedded Processor Software
Development Reference Manual.

— HDL: Turn on.

— Simulation: Turn on if you have the ModelSim software
installed on your PC.

For more information on the simulation files that are
generated, refer to AN 189: Simulating Nios Embedded
Processor Designs.

Figure 20. SOPC Builder System Generation Tab
1™ Altera SOPC Builder - nios32 E@

File System Module YView Tools Help

System Cortents | Syetein Gengraton |
- Options

[SDK. Generate header filss, listary files, and memory contents for CPLICS) and peripherals in your systetn

[7 HDL. Generate bus and system logic in \erilog

[¥ Simuistion. Creste ModelSimitm) project files. Run MocelSim

[+ Done checking for upcites.

Exit = Prev

36 Altera Corporation

Designing & Compiling

Nios Hardware Development Tutorial

3. Click Generate.

SOPC Builder performs a variety of actions during design
generation, depending on which options you have specified. For the
design created using this tutorial, which has all available system
generation options turned on, the SOPC Builder performs the
following actions:

- Generates Verilog HDL or VHDL source files

— Creates the simulation project and source files

— Generates the SDK, C, and Assembly language header and
source files for the options chosen in the Nios More “cpu”
settings tab.

— Compiles the custom software library for the hardware in your

system

- Compiles the GERMS monitor used in the boot monitor ROM

During generation, information and messages appear in the message
box in the System Generation tab.

A System generation will probably take between three to five

minutes.

4. When generation is complete (see Figure 21), the SYSTEM
GENERATION COMPLETED message displays. Click Exit to exit

SOPC Builder.

Figure 21. System Generation Completes

I Altera SOPC Uuilder - nios 32

e Sritem fhukie Yew b

System Contents | Mios More “opu” Settings System Generation |
Er

17 50K,

Thes, esey ties oetents o 0

7 MOL. Gerrate b and sysbem loge: in WWEL for e [Siatn

= Sembtien thes

i your wysien

N =50505 15 1045 13 (73 Prurrwray Gereratior Prograen 1or tivart
by J003.0% 15 10 45-47 (¥) Fureing Goners
o0

e

l'\mn{.lﬂomnu |mmm‘mum s, oo, s, syl
st g snrtu_eimed -1 peos S st T

i Worwie o Mo

fermion 2.2 P 851 0OV 2000 Service Pack 2

E

il C aber e altng faope_insder htiriein s _HA_Tuboiel_Sinstis
ot Commarc.drm sy i (neralin staipl. C dalmamucalta ope_Tuste fugoriats s _A_Tugorial_Siratis 1 EAmn T _gerenstion_teret

54 FUl Viersion strted of tme 05 SZ000 104829

_HAA_Tutrrial_Shentoe_Y 40P _seloine]
5 sl

e SAges_wetesurcs

oty exists,

le 200,05 15 104139) SUCCESS: SYETIM CENDRATION COMPLETID

Prace Tur s

o1 -
P Tusorial_Shrate: 8 SACKsoaXT_gerenation_scrgt
C inberaie s aang frepes_iskler Subcredetacs_FAN_Tulored_Siratie | SA0%us T2 _sim

T il kA Pimary Soril Pert (e, GERHE), Auvbary Serial Port 5 art]
+1 Do chacking for updates.

Fou Corarain

Altera Corporation

37

Nios Hardware Development Tutorial Designing & Compiling

Add the Symbol to the BDF

During generation, SOPC Builder creates a symbol for your Nios system
module. You can add the nios32 symbol to your BDF. To add the
symbol, perform the following steps:

1. Return to the Quartus II software and double-click anywhere inside
the BDF window. The Symbol dialog box appears (Figure 22).

Figure 22. Symbol Dialog Box
Symbol =

Libimine [ETerd
505 Frogat N

Ext_Snered_Bus_sddre:
Lt _Shared_
Ext_Sharo
Exd_Shared_Bus_wien |
be_n1_to_fhe_SRAML_IMBY(2 0 L
Vmmd_p_J_S_SHAM_TMEsn |
select_n_to,_the_Fiask_SMEe |
zelect_n_jo_fhe_SRAM_1MEvle [—
erkn_ri_tio_the_SKAs_1uatitm f—

{

=t in_poet_fo_the_pa.tion,_piol3.]

11
bickr_port_fs_nad_froes fhe_leel_plofd0 0] e
1

[rivert syenbiod as biock: ol _port_from_the bed_mol? 0] [—

'
out_port_irom_he_seven_seq_pol15.3] bt

Megewizad Pligin Manager.. | |
A I st et bara_treen_jton_umtt |

g | |

2. Inthe Symbol dialog box, click Project to expand the Project symbol
directory.

3. Under Project, choose nios32. A large symbol will appear
representing the Nios system you just created.

4. Click OK. The Symbol dialog box closes and an outline of the
nios32 symbol is attached to the pointer.

5. Place the symbol so it lines up with the pins that are already in the
block design schematic files as seen in Figure 23 on page 39.

Altera Corporation

Designing & Compiling

Nios Hardware Development Tutorial

Compile the
Design

Altera Corporation

Figure 23. Adding the nios32 Symbol

= nios_system_madule. bif*

¢ mput s |

S 0] [_port_bo_the_bution_poq3_0] |

T T et ot et Een_trem e st

6.

Choose Save (File menu).

During compilation the Compiler locates and processes all design and
project files, generates messages,and reports related to the current
compilation, and creates the SOF file and any optional programming files.

To compile the nios_system_module design, follow these steps:

1.

Choose Start Compilation (Processing menu). You can optionally
click the Compile toolbar button.

If you get a message asking if you want to save the changes you
made to the BDF file, choose Yes.

The Compiler immediately begins to compile the
nios_system_module design entity, and any subordinate design
entities, using the nios_system_module Compiler settings. As the
design compiles, the Status window automatically displays, as a
percentage, the total compilation progress and the time spent in each
stage of the compilation. The results of the compilation are updated
in the Compilation Report window. The total compilation time may
be 10 minutes or more, depending on the processing power of your
computer, its amount of available memory, and the complexity of
your SOPC design.

39

Nios Hardware Development Tutorial Designing & Compiling

The Compiler may generate one or more of the following warning
messages that do not affect the outcome of your design (see
Figure 24).

Figure 24. Compiler Messages

k| fé/ Automaticall promated signal ios2:instld2_reset_nto use Global cock A
4 / Fitter placement was successh

) Estmated most criical path is memary to register el of BE7E ng

) (lobal signafs use non-global resaurces toroute alobal signaly

) /‘l) g fl C:\aheraevcalburhsope_buldertutorial\Nios_HW_Tutorial Shiatie 1 S4D\nias_spstem_module:hevout

Warnin g—‘E‘_'\ Found pins functioning as undefined clocks and/ar memory enables

Mes sage ! Clack clk hss rtemal e of 103,03 MHz between source register ios32:insdcpuathe_coulepu_pipefine:the_cpu_pipefielepu_conmitment_maker he_cpu_commatment_makedcpu_ingtruction._fetchithe_cqu instuction_fetchicou_address_tequest the_c
&) Designnios_system modde: Fulcamplaton was successfl Denas, 23 wamings 3
4 ¥
Provesing f s |

2. When compilation completes, you can view the results in the
nios_system_module Compilation Report window. See Figure 25.

Figure 25. Compilation Report

S nios_system_module Compilation Report

=3 Compilation Report Summary
& Legal Notice
+1-¢Zp[7] Project Settings
=152 Results for "nios_system_mod

S summary

&SER Compiler Settings

EF 5> Messages

€Sh 8z Hierarchy

HER Logic Options

+- &S] Synthesis Section
ZSEH Device Options

Processing status

Fitting Successful - Thu May 15 11:10:46 2003
Timing requirements/analysis status Mo requirements

&b Equations
&2 Floorplan Yiew
Sis Pin-OLL File
+ ¢&=p(L1] Resource Section
+-¢&Zp1 Timing Analyses
&EHER Processing Time

Chip name

Device for compilation
Total logic elements
Total pins

Total memory bits

DSF block 3-bit elements
Total PLLs

Device for timing analysis

nios_system_moduls
EP1S40F780CE

2,855 / 41,250 [6 % |
108/ B16 (17 %)
34,816/ 3,423,744 (1 %)
0/M2(0%)
0/12(0%]
EP1S40F780CE

If the Compiler displays any error messages, you should correct
them in your design and recompile it until it is error-free before
proceeding with the tutorial. You can select the message and choose
Locate (right button pop-up menu) to find its source(s), and/or
choose Help (right button pop-up menu) to display help on the
message.

“ .- @ Refer to the Compilation module in the Quartus II on-line tutorial for

more information about viewing compilation results.

40 Altera Corporation

A |:|-|=I D)/A Programming

After a successful compilation, the Quartus II Compiler generates one or
more programming files that the Programmer can use to program or
configure a device. You can download configuration data directly into the
FPGA with the ByteBlaster communications cable connected to the JTAG
port (J24) on your Nios development board. You can also download
configuration data to the flash memory device on the Nios development
board over either the JTAG or serial port using the utilities provided. This
method allows you to configure the FPGA using the data stored in flash

memory.

cOnﬁgu re the Once you have properly connected and set up the ByteBlaster cable to
transmit configuration data over the ort, you can configure the

FPGA i figuration d he JTAG port, y fig h

FPGA immediately upon power up on the Nios development board with
your design.

To configure the FPGA on the Nios development board with the
nios_system_module design, follow these steps:

1. Choose Programmer (Tools menu). The Programmer window opens
as shown in Figure 26.

Figure 26. JTAG Chain

Ui nios._system_module.cdf =10
2 HarbeSoup, | BBl LFT1 Hods: TR =] Poges| 0%

W St Fie

Program/ Secuily

Blark-
P ety Exanine
Configurs Check
L. ...05_system_module.sof EP1S10F780 O03B8ASC FFFFFFFF [m] [m] [}

Device Checksum Usercode

o Auto Detect
x Delete

& pdd Fie
W Change .
[Save File.

3 Add Desice.

FLRERREREL

Altera Corporation 41

Nios Hardware Development Tutorial Programming

2. Choose Save As (File menu).

3. Inthe Save As dialog box, type nios_system_module.cdf in the
File name box.

4. In the Save as type list, make sure Chain Description File is
selected.

5. Click Save.

6. In the Mode list of the Programmer window, make sure JTAG is
selected.

7. Click Hardware Setup... to configure the programming hardware.
The Hardware Setup dialog box appears as shown in Figure 27.

Figure 27. Hardware Setup

Hardware Setup

)|

Hardware Settings IJTAG Settings |

Selsct & programming hardwars setup ta Use when programming devices. This programming
hardware setup applies only 10 the current programmer window.

Curently selected hardware: ByteBlastetl [LPT1]

Available hardware items: T
+
Hardwsre Server [Pt | geec e
BpteBlasterl Local [PTI T

8. In the Hardware Type list, select ByteBlaster or ByteBlaster II.

If the ByteBlasterMV or ByteBlaster II option does not appear in the
Hardware Type list, do the following:

a. Click Add Hardware. The Add Hardware dialog box appears as
shown in Figure 28 on page 43.

42 Altera Corporation

Programming Nios Hardware Development Tutorial

Figure 28. Add Hardware

Add Hardware E|
Hardware type: |ByteBIasterMV or BpteBlaster Il j
Poit [P ~|

Baud rate: | J

Cancal |

b. Select ByteBlasterMV or ByteBlaster II from the Hardware type
list and click OK.

c. Now Select ByteBlaster and then click Select Hardware. The
Programming Hardware will now display your selection.

“ .- . Refer to “Installing the ByteBlasterMV & ByteBlaster II Parallel Port
Download Cable” in the Quartus II Installation & Licensing Manual for PCs

for more information.

8. In the Port list, select the port that is connected to the ByteBlaster
cable. Click OK.

9. Click Close to exit the Hardware Setup window.

10. In the Programmer window, turn on Program/Configure. See
Figure 29 on page 44.

Altera Corporation 43

Nios Hardware Development Tutorial Programming

44

Figure 29. Turn on Program/Configure Option

Wl Chain.cdf*

Start Pragramming Hardware.
| Mode: [ITAG =| Progess 0% Type: BpteBlasterl [LPT1] Setup.
=) File ‘ Device Checksum ‘ G| s | L |
SR 1, ...05_system _module,sof EP1S40F760 D06CABEE FFFFFFFFE Eﬂu'e D EI’EEk =
e |
o]
[
Auto Detect
[|
- >
Program/Configure
turned on
11. Click Start. The Programmer begins to download the configuration

data to the FPGA. The Progress field displays the percentage of data
that is downloaded. A message appears when the configuration is
complete.

When the design is successfully downloaded to the Altera device, the
following events occur:

If hardware configuration completes successfully, the D0-D7 LEDs
are illuminated on the Nios development board.

The GERMS monitor, which is stored in the boot_monitor_rom
peripheral runs. The GERMS monitor performs the following system
initialization tasks:

- Disables interrupts on the UART, timer, and switch PIO.

— Sets the Stack Pointer register to the top of RAM.

- Examines two flash memory bytes at Flash_base + 0x4000C
for executable code (it looks for N and 1, the first two letters
spelling Nios).

When the GERMS monitor determines that the flash memory bytes at
Flash_base+ 0x40000 contain N and i, it executes a call to location

Flash_base + 0x40000 and runs the program here.

The check at Flash_base + 0x4000C can be changed in the
GERMS source code if desired.

Altera Corporation

Programming Nios Hardware Development Tutorial

I If you are unable to configure the device correctly, you can
press the Safe Config or Force Config button (SW9) on the
Nios development board to reload the factory default
reference design and continue the tutorial.

cUstDm Think about it! In a short period of time, you created a custom
M | crocon trOI Ier microcontroller from scratch and compiled it to run on a FPGA!

—No Wavl The microprocessor lights the LEDs by default and runs the GERMS
monitor which is a boot monitor program that waits for commands
transmitted over the serial port. Such commands are often stored in an
executable file that you download and run on your microprocessor. You
will be using some of those in the next section. The important point is you
have created your own microcontroller.

Altera Corporation 45

Nios Hardware Development Tutorial Programming

Running
Software on
Your Nios
System

46

Now that you have downloaded the tutorial hardware design to the Nios
development board, you must verify that it works properly and runs
compiled code. Then, you can store the tutorial design in the on-board
flash memory. In this section, you will compile sample code that the SOPC
Builder generated. This code is automatically placed in your project’s SDK
directory. After you compile the code, you will download it and run it on
the tutorial system module that you loaded into the FPGA.

This section contains the following;:
1. “Nios SDK Shell Tips” on page 46
2. “Start the Nios SDK Shell” on page 47

3. “Compile & Run the Sample hello_nios.srec Test Program” on
page 48

Nios SDK Shell Tips

If you like typing, skip this section. Below are some shortcuts and tips
when using the Nios SDK Shell in the following sections:

B The Nios SDK Shell opens to the /altera/kits/nios/examples
directory by default. To change to your SDK directory, type:

cd ../tutorials/<board specific tutorial>/cpu_sdk/src

B The Nios SDK Shell supports command completion of unique
commands with the Tab key and pattern matching with the * key.
Therefore, instead of typing a whole string, you can type a few letters.
For example:
— Instead of typing the word tutorials, type tut and press the Tab

key.

- Instead of typing <Nios CPU name>_sdk, type *sdk.

B Using these keyboard shortcuts, the command to change to the Nios
tutorial directory is:

cd ../tut<Tab Key>/Nios_HW<Tab Key>/*sdk<Tab Key>/src ¢
B As ashortcut, you can type nb instead of nios-build. For example:

nb hello_nios.c ¢

Altera Corporation

Programming

Nios Hardware Development Tutorial

Altera Corporation

B Asashortcut, you can type nr instead of nios-run. For example:

nr hello_nios.srec ¢

Start the Nios SDK Shell

The Nios SDK Shell is a UNIX-like command shell that allows you to do
the following:

B Build code

B Download code to the Nios development board

B Run utilities (e.g. nios-build and nios-run)

B Run various test programs on the Nios development board

For more detailed information about software utilities, refer to the Nios
Software Development Reference Manual.

To start the Nios SDK Shell, do the following;:

Choose Programs > Altera > Nios Development Kit <installed
version> > Nios SDK Shell (Windows Start menu). The Nios SDK
Shell window appears. The Nios SDK Shell window displays some
text, including path information and some messages about sample
programs. See Figure 30.

Figure 30. Nios SDK Shell

Wl Chaind.cdf.

Programming Hardare

Mode: [4TAG | Progess 0% Type: ByteBlasterll [LPT1] Selup..

Start

i

Add File
Add Device..

[|
_ e |
[]
o |

Blank-
Check.

Secuily
Bit

Program/’

File Device Checksum Usercode Verify Examine

Configure

Auto Detect
[

-
v

47

Nios Hardware Development Tutorial Programming

48

Compile & Run the Sample hello_nios.srec Test Program

You can compile and run the Altera-provided hello_nios.c program to
test the functionality of the nios_system_module design you downloaded
into the FPGA. The hello_nios.c program is located in the
c:\altera\kits\nios\tutorials\Nios_HW_Tutorial

<Nios board version>\cpu_sdk\src project subdirectory. You can use the
nios-build and nios-run utilities to compile the hello_nios.c program and
run it on your Nios system module.

To compile and run the sample hello_nios.c test program from the Nios
SDK Shell, follow these steps:

1.

To change to the appropriate project subdirectory, type the following
command at the Nios SDK Shell prompt:

cd c:/Altera/kits/nios/tutorials/
Nios_HW_Tutorial_<Nios board version>/cpu_sdk/src

[= You must use the “/” character instead of the “\” character
as a directory separator in the Nios SDK Shell window.

Type the following command at the Nios SDK Shell command
prompt:

nios-build hello_nios.c ¢

The nios-build utility compiles the C code in the hello_nios.c file
and generates the hello_nios.srec file.

To download to the board and run the hello_nios.srec program, type
the following command at the Nios SDK Shell prompt:

nios-run -r -p com<com port number> hello_nios.srec ¢

I'=" If you do not specify a COM port with the
-p com<com port number> text, the nios-run utility uses
COM1 by default.

The nios-run utility sends the executable code via the COM port,
then runs the hello_nios.srec program on the Nios system module
you created. This program generates the message Hello, from
Nios! and causes the dual 7-segment LEDs (U8 and U9) to count
down from 99 to 00. The Nios processor resumes execution of the
GERMS monitor when the hello_nios.srec program is complete. See
Figure 31 on page 49.

Altera Corporation

Programming Nios Hardware Development Tutorial

-« For more information on the nios-run and nios-build commands, refer to

the Nios Embedded Processor Software Development Reference Manual.

Figure 31. Run hello_nios.srec Program

To Altera SOPC Builder
4.088. Built Mon Nov 10 16:27:12 PST 2083

os Development Kit
Built Mon Dec 22 11:35:22 PST 2883

{You may add a
[SOPC Builderl$

Nios SDK Shell prompt

v/ When the hello_nios.srec program is complete, press the CPU Reset
button (SW8) on the Nios development board to clear the
hello_nios.srec program from the Nios embedded processor.

Il=7 The CPU Reset button (SW8) is tied to the reset pin in the Nios
system module. Pressing the CPU Reset button is the same as
performing a power-on-reset on the microprocessor. Pressing
the CPU Reset button does not reconfigure the FPGA.

Download the You can store configuration data in the flash memory device provided on
. the Nios development board. This section describes how to use the

DeS|g|'| to Flash hexout2flash utility to convert the .hexout hardware configuration file

M em OI'V created in the Quartus II software into a new file for the GERMS monitor.
The GERMS monitor uses this new file to erase the user-configuration
section of the flash memory on the Nios development board. Once erased,
the GERMS monitor then downloads the nios system module
configuration data to the user-configuration section of flash memory
device on the Nios development board.

Altera Corporation 49

Nios Hardware Development Tutorial

Programming

50

To download configuration data to the flash memory device on the Nios
development board, follow these steps:

1.

Make sure you have the tutorial hardware design running on the
Nios development board. The easiest way to tell if the design is
running is by looking at the DO -D7 LEDs. They should all be
illuminated.

Change to your Quartus II project directory from the cpu_sdk/src
directory by moving up two levels:

cd ../.. ¢

Type one of the following commands depending on which board
you are using to create a hexout2flash
nios_system_module.hexout file.

For the Nios Stratix 1510 board type:
hexout2flash -b 0x600000 -s 0x06bde6 nios_system_
module.hexout

For the Nios Cyclone 1C20 board type:
hexout2flash -b 0x600000 -s 0x06c9cb nios_system_
module.hexout

For a Nios Stratix 1540 board type:
hexout2flash -b 0x400000 -s 0xl7alal0 nios_system_
module.hexout

Generating the nios_system_module.hexout file creates a new
file called nios_system_module.hexout.flash.

The hexout2flash utility simply prepends the following GERMS
commands to the .hexout file and renames it to a .hexout.flash
file.

600000 «
€610000 «
€620000 «
€630000 «
€640000 «
650000 «
e660000 «
670000 «
680000 «
€690000 «

Altera Corporation

Programming

Nios Hardware Development Tutorial

Next Steps

Altera Corporation

€6a0000 «
r600000 «

The e command in GERMS is used to erase flash at the location
following e (in the first case, e6000000 means erase the flash
sector containing 6000000). The last command r6000000 is a
relocation command that affects all addresses in the hexout file.
By default the hexout file written starts at 0x000000, but to write
this data into the flash starting at address location 0x600000 we
use the (r) relocate command.

To download configuration data for your project to the flash memory
device on the Nios development board, type the following command
at the Nios SDK Shell prompt:

nios-run -r nios_system module.hexout.flash ¢

The nios-run utility begins to download the configuration data to
the flash memory device on the Nios development board, beginning
at memory address 0x600000. This task may require a few minutes
to complete. The nios-run utility returns to terminal mode when the
download is complete.

If downloading is proceeding successfully, the Nios SDK Shell
displays a string of periods (.). If the shell displays an exclamation
point (!), an error was encountered during the flash programming. If
you receive an exclamation point, go try Figure 4 on page 51 again.

To configure the FPGA with the nios_system_module data stored in
the flash memory, press the Power-On Reset button (SW10) on the
Nios development board. The FPGA is configured with the
nios_system_module data stored in the flash memory device. When
the configuration is complete, LEDO through LED? are lit on the
Nios development board and the GERMS monitor displays the text
Nios Hardware Tutorial or whatever custom message you
chose.

Congratulations! You have finished creating, verifying, and using your
first Nios system. To learn more about the Nios embedded processor and
the SOPC Builder, refer to the following sources:

B For information on using the advanced features of the

Nios processor, refer to:
— AN 184: Simultaneous Multi-Mastering with the Avalon Bus

— AN 188: Custom Instructions for the Nios Embedded Processor
— AN 189: Simulating Nios Embedded Processor Designs

51

Nios Hardware Development Tutorial Programming

52

— Nios Custom Instructions Tutorial
For additional Nios software development information, refer to:

— Nios Software Development Tutorial

— Nios Embedded Processor Software Development Reference Manual
— Nios Embedded Processor 16-Bit Programmer’s Reference Manual
— Nios Embedded Processor 32-Bit Programmer’s Reference Manual
— AN 284: Implementing Interrupt Service Routines in Nios Systems

A variety of reference designs that can be downloaded and used on

the Nios development board are located in the
c:\altera\kits\nios\examples directory.

Altera Corporation

	About this Document
	How to Find Information
	How to Contact Altera
	Typographic Conventions

	Table of Contents
	Tutorial Overview
	Introduction
	Hardware & Software Requirements
	Tutorial Files
	What This Tutorial Does Not Teach You

	Hardware/ Software Development Flow
	Hardware Development Flow

	Designing & Compiling
	Accessing a Quartus II Project
	Create a Nios System Module
	Start SOPC Builder
	System Speed
	Add CPU & Peripherals
	Nios 32-Bit CPU
	On-Chip Boot Monitor ROM
	Communications UART
	Timer
	Button PIO
	LCD PIO
	LED PIO
	Seven Segment PIO
	External RAM Bus (Avalon Tri-State Bridge)
	External RAM Interface
	External Flash Interface

	Specify Base Addresses
	Setting the Flash Base Address

	Generate the System Module
	Add the Symbol to the BDF

	Compile the Design

	Programming
	Configure the FPGA
	Custom Microcontroller -No Way!
	Running Software on Your Nios System
	Nios SDK Shell Tips
	Start the Nios SDK Shell
	Compile & Run the Sample hello_nios.srec Test Program

	Download the Design to Flash Memory
	Next Steps

