
Nios Software 
Development Tutorial

 

101 Innovation Drive
San Jose, CA 95134
(408) 544-7000
http://www.altera.com

Document Version: 1.3
Document Date: July 2003

http://www.altera.com


ii Altera Corporation
TU-NIOSSFTWR-1.3

Copyright Nios Software Development Tutorial

Copyright © 2003 Altera Corporation. All rights reserved. Altera, The Programmable Solutions Company, the stylized Altera logo, 
specific device designations, and all other words and logos that are identified as trademarks and/or service marks are, unless 
noted otherwise, the trademarks and service marks of Altera Corporation in the U.S. and other countries. All other product or 
service names are the property of their respective holders. Altera products are protected under numerous U.S. and foreign patents 
and pending applications, mask work rights, and copyrights. Altera warrants performance of its semiconductor 
products to current specifications in accordance with Altera’s standard warranty, but reserves the right to make 
changes to any products and services at any time without notice. Altera assumes no responsibility or liability 
arising out of the application or use of any information, product, or service described herein except as expressly 
agreed to in writing by Altera Corporation. Altera customers are advised to obtain the latest version of device 
specifications before relying on any published information and before placing orders for products or services.     



Altera Corporation
About this Tutorial
This document provides a software tutorial for the Altera® Nios® 
embedded processor.

Table 1 shows the tutorial revision history.

How to Find 
Information

■ The Adobe Acrobat Find feature allows you to search the contents of 
a PDF file. Click the binoculars toolbar icon to open the Find dialog 
box.

■ Bookmarks serve as an additional table of contents.
■ Thumbnail icons, which provide miniature previews of each page, 

provide a link to the pages.
■ Numerous links, shown in green text, allow you to jump to related 

information.

Table 1. Tutorial Revision History

Date Description

July 2003 Reflects new directory structure for SOPC Builder 3.0 and Nios 
Development Kit version 3.1.

May 2003 Minor edits and additions.

March 2003 Updated the document so that it applies to all Nios development 
kits.

January 2003 First publication.
 iii



About this Tutorial Nios Software Development Tutorial
How to Contact 
Altera

For the most up-to-date information about Altera products, go to the 
Altera world-wide web site at http://www.altera.com. 

For technical support on this product, go to 
http://www.altera.com/mysupport. For additional information about 
Altera products, consult the sources shown in Table 2.

Note:
(1) You can also contact your local Altera sales office or sales representative. 

Table 2. How to Contact Altera

Information Type USA & Canada All Other Locations

Technical support http://www.altera.com/mysupport/ http://www.altera.com/mysupport/

(800) 800-EPLD (3753)
(7:00 a.m. to 5:00 p.m. 
Pacific Time)

(408) 544-7000 (1)
(7:00 a.m. to 5:00 p.m. 
Pacific Time)

Product literature http://www.altera.com http://www.altera.com

Altera literature services lit_req@altera.com (1) lit_req@altera.com (1)

Non-technical customer 
service

(800) 767-3753 (408) 544-7000 
(7:30 a.m. to 5:30 p.m. 
Pacific Time)

FTP site ftp.altera.com ftp.altera.com
iv Altera Corporation

http://www.altera.com
http://www.altera.com/mysupport
http://www.altera.com/mysupport
http://www.altera.com/mysupport/
http://www.altera.com/mysupport/
http://www.altera.com
http://www.altera.com
mailto:lit_req@altera.com
mailto:lit_req@altera.com
ftp.altera.com
ftp.altera.com


Nios Software Development Tutorial About this Tutorial
Typographic 
Conventions

This document uses the typographic conventions shown in Table 3.

Table 3. Conventions

Visual Cue Meaning

Bold Type with Initial 
Capital Letters

Command names, dialog box titles, checkbox options, and dialog box options are 
shown in bold, initial capital letters. Example: Save As dialog box. 

bold type External timing parameters, directory names, project names, disk drive names, 
filenames, filename extensions, and software utility names are shown in bold type. 
Examples: fMAX, \qdesigns directory, d: drive, chiptrip.gdf file.

Italic Type with Initial 
Capital Letters

Document titles are shown in italic type with initial capital letters. Example: AN 75: 
High-Speed Board Design.

Italic type Internal timing parameters and variables are shown in italic type. Examples: tPIA, n + 1.
Variable names are enclosed in angle brackets (< >) and shown in italic type. Example: 
<file name>, <project name>.pof file. 

Initial Capital Letters Keyboard keys and menu names are shown with initial capital letters. Examples: 
Delete key, the Options menu. 

“Subheading Title” References to sections within a document and titles of on-line help topics are shown 
in quotation marks. Example: “Typographic Conventions.”

Courier type Signal and port names are shown in lowercase Courier type. Examples: data1, tdi, 
input. Active-low signals are denoted by suffix n, e.g., resetn.

Anything that must be typed exactly as it appears is shown in Courier type. For 
example: c:\qdesigns\tutorial\chiptrip.gdf. Also, sections of an actual 
file, such as a Report File, references to parts of files (e.g., the AHDL keyword 
SUBDESIGN), as well as logic function names (e.g., TRI) are shown in Courier. 

1., 2., 3., and a., b., c.,... Numbered steps are used in a list of items when the sequence of the items is 
important, such as the steps listed in a procedure. 

■ Bullets are used in a list of items when the sequence of the items is not important. 

v The checkmark indicates a procedure that consists of one step only.

1 The hand points to information that requires special attention. 

r The angled arrow indicates you should press the Enter key.

f The feet direct you to more information on a particular topic. 
Altera Corporation v





Table of Contents
About this Tutorial ...................................................................................................................................... iii
How to Find Information .............................................................................................................. iii
How to Contact Altera .................................................................................................................. iv
Typographic Conventions ..............................................................................................................v

Tutorial Overview .........................................................................................................................................9
Hardware/ 
Software Development Flow ..........................................................................................................9
Hardware & Software Requirements ..........................................................................................11
Tutorial Files ...................................................................................................................................12
Software Tools Used ......................................................................................................................12

GNUPro Tools ........................................................................................................................12
Nios On-Chip Instrumentation (OCI) Debug Module .....................................................12
Nios OCI Debug Console ......................................................................................................13
Nios SDK Shell .......................................................................................................................13

About Configurable Processor Hardware Features ..................................................................13
Multipliers ...............................................................................................................................13
Data & Instruction Caches ....................................................................................................14
Custom Instructions ..............................................................................................................14
Simultaneous Multi-Master Bus Architecture & DMA ....................................................14
Peripherals & Memory Interfaces ........................................................................................14

Nios SDK .........................................................................................................................................14
inc Directory ...........................................................................................................................15
lib Directory ............................................................................................................................17
src Directory ............................................................................................................................17

Tutorial ...........................................................................................................................................................19
Before You Begin ............................................................................................................................19
Open the Nios SDK Shell ..............................................................................................................20
Compile a Program ........................................................................................................................21
Download, Run & Debug the Program Using Insight .............................................................22
Download, Run & Debug the Program Using the Nios OCI Debug Console ......................29
Rebuild the Software .....................................................................................................................33
Download the Software to Flash ..................................................................................................34
Third-Party Development & Debug Tools .................................................................................35

Appendix—Using a .hexout ....................................................................................................................37
Altera Corporation  vii



Contents  Nios Software Development Tutorial
GERMS Monitor .............................................................................................................................39
Insight: GNU Debugger ................................................................................................................39

Appendix—Other Board Communication & Debug ........................................................................39
Gprof: GNU Profiler ......................................................................................................................41

Requirements ..........................................................................................................................42
Debugging Code with Gprof ................................................................................................42
Changing Gprof Settings ......................................................................................................48

References .......................................................................................................................................48

Appendix—Nios SDK Shell Tips ...........................................................................................................49
Changing to the SDK Directory ...........................................................................................49
Keystroke Shortcuts ...............................................................................................................49
Utility Usage Shortcuts .........................................................................................................49

Index ................................................................................................................................................................51
viii Altera Corporation



Altera Corporation

Tut

1

Tutorial Overview

orial Overview
Hardware/ 

Software 
Development 
Flow

This tutorial introduces software development for the Nios processor and 
walks you through the basic software development flow for compiling, 
debugging, and prototyping embedded software. Although this tutorial 
uses the Nios development kit as a demonstration platform, the general 
concepts introduced in this tutorial are valid for any Nios processor 
system. The instructions in this tutorial are designed to work with the 
following Nios development kits: 

■ Nios Development Kit, Stratix Edition
■ Nios Development Kit, Cyclone Edition
■ Nios Development Kit, Stratix Professional Edition

Figure 1 shows a complete design flow for creating a Nios system and 
prototyping it on the Nios development board. The diagram includes both 
the hardware and software design tasks required to create a working 
system. The right side shows the software development flow while the left 
side shows the hardware design flow. This tutorial walks you through the 
steps “Software Development” and “Software Prototype on the 
Development Board” shown in Figure 1. 

f Refer to the Nios Hardware Development Tutorial for a complete explanation 
of the hardware flow.

Figure 1. Hardware/Software Development Flow for a Nios Processor System
Step 1: Predesign Activity
z Analyze System Requirements (Performance & Throughput)
z Define Nios Processor Subsystem (CPU, Peripherals, Memory Structure, DMA Channels, etc.)

Standard System
Components
z UART
z PIO
z DMA
z etc.

User-Defined
Components
z Custom Peripherals
z Custom Instructions

Does System
Meet Goals?

No No

Yes

Software Development
Software Libraries

OS Kernel

Drivers & Routines 
for Custom Peripherals

Hardware Development

Custom SDK
z Memory Map
z IRQs
z Routines for 
      Standard Peripherals

Hardware Prototype on 
Development Board

Step 5:
Software Prototype on 
Development Board

Step 6:
Successful Prototype of
Nios System Module

Step 2:
Begin C/C++ Development

Step 3: 
Develop Drivers & Routines
for Custom Hardware

Step 4:
Compile & Link, Targeting
Custom Hardware Platform

Define Nios Processor 
System Module with SOPC 
Builder

Assign Device, Layout Pins & 
Compile Hardware with the 
Quartus II Software

Create Custom Acceleration
Hardware
Create Custom Acceleration
Hardware
 9



Tutorial Overview Nios Software Development Tutorial
Figure 1 on page 9 shows where the hardware and software flows 
intersect. To obtain a complete, working system, it is important to know 
what each side must provide for the other. Even if your development 
involves separate teams for hardware and software design, it is helpful to 
understand the design flow on both sides of the hardware-software 
divide. 

The development flow begins with predesign activity (step 1 in Figure 1), 
which includes an analysis of the system requirements:

■ What computational performance does the design require? 
■ How much bandwidth or throughput must the system handle? 

Based on the answers to these questions, you can determine the concrete 
system requirements: 

■ Will the CPU need a hardware-accelerated multiplier?
■ Which peripherals, and how many of each, does the design require?
■ Could DMA channels be used to free up CPU cycles spent copying 

data? 

These decisions involve both the hardware and software teams. 

Based on the system requirements, the hardware design begins with the 
SOPC Builder system integration software. At this point, you can begin 
writing device-independent C/C++ software, such as arithmetic 
algorithms or control programs (step 2 in Figure 1). You can use existing 
software libraries and/or an OS kernel to speed the development process. 

After the hardware designer defines the custom Nios processor hardware 
system using SOPC Builder, SOPC Builder generates a custom software 
development kit (SDK) that forms the foundation for the software 
development flow. With the SDK (step 3 in Figure 1), you can begin 
writing software that interacts at a low level with hardware components. 
The SDK defines the software view of the custom hardware, including the 
memory map and the data structures for accessing hardware components 
in the system. The SDK provides software routines for accessing standard 
peripherals such as UARTs, PIOs, and DMA controllers. With very little 
development effort, you can use the SDK to communicate successfully 
with fundamental system components.
10 Altera Corporation



Nios Software Development Tutorial Tutorial Overview

 Tutorial Overview

1
The GNUPro Toolkit is used to compile and link software with the SDK 
generated routines, header files, and other software libraries (step 4 in 
Figure 1). After the hardware designers prototype the basic Nios 
processor hardware working on the development board, the software 
team can download the software to the development board and prototype 
the software executing in hardware (step 5 in Figure 1). The Nios 
development kit provides several utilities for compiling software projects 
and downloading programs to the development board using an Altera 
ByteBlasterMV or ByteBlaster II download cable or using a serial cable. 
The available GNUPro Toolkit and Nios development utilities provide 
rapid edit-compile-download-debug iterations while designing your 
system (step 6 in Figure 1).

The configurable Nios processor offers flexible options for performance 
enhancements if the system does not initially achieve its performance 
goals. Refer to “About Configurable Processor Hardware Features” on 
page 13 for more information about these features.

1 If the system includes custom hardware components, then you 
must create low-level C or Assembly language routines to 
interface to the custom hardware. These routines can be simple, 
such as writing values to a PIO peripheral to communicate 
control data to the outside world; or more complex, such as using 
interrupt service routines to monitor and process stimulus from 
the outside world continuously. In many cases, the hardware 
engineer writes the most low-level software functions, and these 
functions become an integrated part of the SDK. This tutorial 
does not describe how to write software for custom peripherals.

Hardware & 
Software 
Requirements

This tutorial requires the following hardware and software:

■ A PC with the Nios processor version 3.0 and related software 
development tools installed.

■ Nios development board configured with the factory-programmed 
“safe” reference design. The board should be set up and connected as 
described in the getting started user guide for your kit.

■ The ByteBlaster download cable driver, installed as described in the 
Quartus II Installation & Licensing for PCs manual.

f Refer to the getting started user guide for your kit for details on the Nios 
development board and the Nios development tools.
Altera Corporation 11



Tutorial Overview Nios Software Development Tutorial
Tutorial Files The Nios embedded processor software installation creates the directories 
shown in Table 4 in the \altera\kits\nios directory by default. 

Software Tools 
Used

The following sections describe the software tools that you will use in this 
tutorial.

GNUPro Tools

The Nios development kit includes the GNUPro Toolkit, which includes 
a compiler, debugger (command-line GDB and GUI-based Insight), and 
general-purpose software development utilities. For more information, 
refer to the Nios documentation in the <SOPC Builder>/documents 
directory and other Red Hat documents in the <SOPC 
Builder>/documents/gnu_tools directory.

Nios On-Chip Instrumentation (OCI) Debug Module

The Nios On-Chip Instrumentation (OCI) Debug Module is a debug core 
created by First Silicon Solutions. The Nios OCI Debug Module provides 
a JTAG interface to the Nios CPU, and implements an in-circuit emulator 
feature set including run control, memory and register visibility, and 
complex breakpoints. 

Table 4. Directory Structure

Directory Name Description

bin Contains tools required for developing Nios hardware & 
software designs, including the GNU tool chain.

components Contains all of the SOPC Builder peripheral components. Each 
peripheral has its own subdirectory with a class.ptf file that 
describes the component.

documents Contains documentation for the Nios embedded processor, 
Nios development board, SOPC Builder, and GNUPro Toolkit.

examples Contains subdirectories of Nios sample designs, including the 
standard_32 project on which the design for this tutorial is 
based.

tutorials Contains subdirectories of files that you can use with various 
Nios tutorials. The directory for this tutorial is 
Nios_SW_Tutorial_<device family>_<device>.
12 Altera Corporation



Nios Software Development Tutorial Tutorial Overview

 Tutorial Overview

1
Nios OCI Debug Console

The Nios OCI Debug Console is a command-line interface for 
communicating with the Nios OCI Debug Module. Commands are 
included for system configuration, emulation control, memory access 
(including an assembler and disassembler), register access, trace and 
trigger access, file downloading, and status indication. The commands are 
detailed in Appendix A of First Silicon Solutions’ Getting Started: System 
Analyzer for Nios Processor Core. The Nios development kit includes a 
version of the debug console that works with the Altera ByteBlasterMV or 
ByteBlaster II cable.

1 Nios Development Kit, Stratix Professional Edition users can 
also set complex data breakpoint triggers like breaking execution 
when a specific data value is stored to a specific address. 

Nios SDK Shell

You use this bash environment to develop Nios software and 
communicate with the Nios development board. The Nios SDK Shell 
provides a UNIX-like environment on a PC platform. The Nios 
development kit includes many Nios-specific utilities that you can run in 
the Nios SDK Shell to generate and debug software. You can also use the 
Nios SDK Shell to run test programs on the Nios development board. 

About 
Configurable 
Processor 
Hardware 
Features

Designing with a soft-core processor allows you to configure the 
processor hardware based on your system requirements. The following 
sections describe some of the available features you can use to increase the 
performance of your Nios system. 

Multipliers

The 32-bit Nios CPU offers two hardware-accelerated multiply 
instructions, which achieve up to ten times the performance of a software-
only implementation. If your code performs few multiplication 
operations, does not contain time-critical multiplication, or you want to 
make the CPU core as small as possible, use the software math libraries 
included with the C compiler. On the other hand, if your code performs 
numerous multiplication operations or must be optimized for speed, 
choose one of the dedicated hardware multipliers (MSTEP or MUL). For 
more information, refer to the Nios 3.0 CPU Data Sheet.
Altera Corporation 13



Tutorial Overview Nios Software Development Tutorial
Data & Instruction Caches

You can configure the Nios processor to use on-chip memory as 
instruction cache (I-cache) and data cache (D-cache), which can improve 
overall system performance. The processor stores copies of off-chip 
memory in the on-chip I-cache and D-cache to decrease memory access 
time. If you are using slower off-chip memory and want better 
performance, add I-cache and/or D-cache. 

Custom Instructions

You can add custom instructions to the Nios processor to improve 
performance dramatically. If you find that a particular operation prevents 
the system from meeting your performance goals, consider implementing 
that operation in hardware as a custom instruction.

Simultaneous Multi-Master Bus Architecture & DMA

The Nios processor uses a multi-master bus architecture, which allows 
multiple masters to perform bus transactions simultaneously. For 
example, the simultaneous multi-master architecture allows a DMA 
peripheral to transfer data between peripherals and/or memories while 
the Nios CPU executes instructions simultaneously, as long as the DMA 
and the Nios processor do not access the same peripheral. This feature 
increases system throughput without increasing the clock frequency. For 
more information, refer to AN 184: Simultaneous Multi-Mastering with the 
Avalon Bus.

Peripherals & Memory Interfaces

You can create a Nios processor hardware system with any combination 
of peripherals, memory interfaces, or CPUs. Often, it is more efficient to 
duplicate hardware resources than to make software share a single 
resource. The only limiting factor for the number of CPUs, peripherals, 
and memory interfaces in a system is the amount of logic inside the Altera 
FPGA. The SOPC Builder tool makes it easy to add intellectual property 
(IP) as well as user-defined logic to the peripheral library. Visit the Altera 
web site for a list of the SOPC Builder ready blocks.

Nios SDK In addition to the GNUPro tools, the SDK is the foundation for developing 
Nios software. SOPC Builder generates a custom SDK for every Nios 
processor system generated. If you do not use SOPC Builder to generate 
hardware, then you must provide your own SDK. 
14 Altera Corporation



Nios Software Development Tutorial Tutorial Overview

 Tutorial Overview

1
The SDK is a collection of files, and the top-level directory is of the format 
<CPU name>_sdk (where <CPU name> is the CPU name given in SOPC 
Builder). If your system has more than one Nios CPU, you should receive 
an SDK for each CPU. 

The three main directories in the Nios SDK are:

■ inc
■ lib
■ src

f For more information on the SDK, refer to the Nios Software Development 
Reference Manual.

inc Directory

The inc (include) directory has include files (.h and .s) that contain 
peripheral addresses, register structures, interrupt numbers, function 
prototypes for some useful routines, and Assembly language macros. The 
excalibur.h and excalibur.s files contain #define statements that 
describe the memory map and interrupt priorities. The directory also 
includes function prototypes for software routines and C structures for 
accessing peripheral registers. Because the Nios processor architecture 
and memory map are configurable, you should only reference the 
hardware using the symbols defined in files in the inc directory. Figure 2 
is an excerpt from an example excalibur.h file.

Figure 2. Example excalibur.h

.

.

.

// The Memory Map

#define na_boot_monitor_rom      ((void *)     0x00000000) // 
altera_avalon_onchip_memory
#define na_boot_monitor_rom_base               0x00000000
#define na_boot_monitor_rom_end  ((void *)     0x00000400)
#define na_boot_monitor_rom_size               0x00000400
#define na_uart1                 ((np_uart *)  0x00000400) // 
altera_avalon_uart
#define na_uart1_base                          0x00000400
#define na_uart1_irq                           26
#define na_timer1                ((np_timer *) 0x00000440) // 
altera_avalon_timer
#define na_timer1_base                         0x00000440
#define na_timer1_irq                          25
.
.
.

Continued on next page 
Altera Corporation 15



Tutorial Overview Nios Software Development Tutorial
// ----------------------------------------------
// Timer Peripheral

// Timer Registers
typedef volatile struct

{
int np_timerstatus;  // read only, 2 bits (any write to clear TO)
int np_timercontrol; // write/readable, 4 bits
int np_timerperiodl; // write/readable, 16 bits
int np_timerperiodh; // write/readable, 16 bits
int np_timersnapl;   // read only, 16 bits
int np_timersnaph;   // read only, 16 bits
} np_timer;

// Timer Register Bits
enum

{
np_timerstatus_run_bit    = 1, // timer is running
np_timerstatus_to_bit     = 0, // timer has timed out

np_timercontrol_stop_bit  = 3, // stop the timer
np_timercontrol_start_bit = 2, // start the timer
np_timercontrol_cont_bit  = 1, // continuous mode
np_timercontrol_ito_bit   = 0, // enable time out interrupt

np_timerstatus_run_mask    = (1<<1), // timer is running
np_timerstatus_to_mask     = (1<<0), // timer has timed out

np_timercontrol_stop_mask  = (1<<3), // stop the timer
np_timercontrol_start_mask = (1<<2), // start the timer
np_timercontrol_cont_mask  = (1<<1), // continuous mode
np_timercontrol_ito_mask   = (1<<0)  // enable time out interrupt
};

// Timer Routines
int nr_timer_milliseconds(void);// Starts on first call, hogs timer1.
.
.
.

The prefixes na_ and np_ stand for Nios address and Nios peripheral, 
respectively. The base addresses of the peripherals are derived from the 
user-defined name assigned in SOPC Builder. You should refer to the base 
addresses as na_<peripheral name>. Similarly, refer to the names of the 
registers in the C structure as np_<register name>. Always use these names 
instead of absolute addresses so that you will not have to change the code 
if the memory map changes. 
16 Altera Corporation



Nios Software Development Tutorial Tutorial Overview

 Tutorial Overview

1
lib Directory

The lib (library) directory contains a makefile, and archive, source, and 
object files for libraries usable by your Nios system. The archive contains 
assembled (or compiled) versions of routines from each file, suitable for 
linking to your program.

src Directory

All source code should be placed in the src (source) directory when using 
the nios-build command. The SDK src directory includes software code 
examples for you to test the system. You can download these examples to 
the development board and run them without any modifications.
Altera Corporation 17





Altera Corporation
Tutorial

Tutorial

2

This section walks you through the process of compiling software for the 
Nios processor, downloading software to the Nios development board, 
and debugging software. 

Before You 
Begin

To begin developing software for the Nios processor, you must have the 
following items:

■ SDK for your design. The SDK contains header files, library files, and 
example source code.

1 This tutorial uses the SDK generated by SOPC Builder for 
the factory reference design on the Nios development 
board. The files are located in the <installation 
path>/tutorials/Nios_SW_Tutorial_<device 
family>_<device>/cpu_sdk directory. These files are an 
example of what is required before starting software 
development. 

■ A development board with a serial cable and a ByteBlasterMV or 
ByteBlaster II cable attached. Set up the Nios development board and 
connect the serial, ByteBlasterMV, or ByteBlaster II cables as 
described in the getting started user guide for your kit. This tutorial 
assumes you have the factory image loaded on the Nios development 
board. The factory image is loaded if the Safe LED is illuminated. 

■ The hardware image for the development board. Usually the image 
is a Hexadecimal (Intel-Format) Output File (.hexout), an output of 
the Quartus II software, containing an Altera FPGA image that is 
ready to be loaded into flash memory on the board.

■ The data sheet for each peripheral used in the design. The data sheet 
provides a description of the registers and software routines in the 
SDK, which you can use in your code. The peripheral data sheets are 
located in the <installation path>/documents directory. 
 19



Tutorial Nios Software Development Tutorial
Open the Nios 
SDK Shell

As described in “Nios SDK Shell” on page 13, the Nios SDK Shell is a 
UNIX-like command shell that allows you to build software, download 
software to the Nios development board, and run utilities and various test 
programs on the board. Table 5 briefly describes some of the utilities that 
you can invoke in the Nios SDK Shell. 

f For more detailed information about these and other software utilities, 
refer to the Nios Software Development Reference Manual.

1 For helpful hints on using the Nios SDK Shell, refer to 
“Appendix—Nios SDK Shell Tips” on page 49.

1. Choose Programs > Altera > Nios <version> > Nios SDK Shell 
(Windows Start menu). The Nios SDK Shell window opens and 
displays some text, including path information and messages about 
sample programs. By default, the shell opens in the 
/Altera/kits/nios/examples directory. See Figure 3.

Table 5. Nios SDK Shell Commands

Command Description

nios-build Compiles and links the source code (C and Assembly).

nios-run Downloads software to a development board and runs it. 
It is also used as a terminal program to interact with the 
development board.

nios-console Launches the Nios OCI Debug Console.

nios-debug Launches the software debugger.

hexout2flash Converts a hardware design .hexout file to a .flash file 
that can be downloaded to a flash device.

srec2flash Converts a compiled software program S-Record file 
(.srec) into a flash image that will be executed 
automatically when the development board is reset.

nios-elf-size Prints the size of the code, data, and uninitialized storage.

nios-elf-objdump Creates a .objdump file with disassembly of the .out file.

nios-elf-gprof Creates the execution profile of a C program.
20 Altera Corporation



Nios Software Development Tutorial Tutorial

Tutorial

2

Figure 3. Nios SDK Shell

Compile a 
Program

In this section you will compile a program using the Nios SDK Shell. To 
compile your program, perform the following steps.

1. Change to the software tutorial source directory, <installation 
path>/tutorials/Nios_SW_Tutorial_<device family>_<device> 
/cpu_sdk/src, by typing the following command at the Nios SDK 
Shell prompt:

cd ../tutorials/Nios_SW_Tutorial_<device family>_<device> 
   /cpu_sdk/src r 

2. Compile lcd_demo1.c by typing the following command:

nios-build lcd_demo1.c r 

The nios-build command compiles and links the source code in 
lcd_demo1.c, creates an executable S-record file (.srec), and creates 
the files shown in Table 6. The nios-build command is an alternative 
to the makefile, which is fully supported in Nios development kit. 
For more information on makefiles, refer to the Nios Embedded 
Processor Software Development Reference Manual.

1 You can use the abbreviated command nb instead of nios-
build. 
Altera Corporation 21



Tutorial Nios Software Development Tutorial
3. You can determine the amount of memory the program consumes by 
typing the following command:

nios-elf-size lcd_demo1.out r 

This command lists the size of the code (text), data (data), and 
uninitialized storage sizes (bss). The decimal and hexidecimal 
columns printed by the nios-elf-size command are the decimal and 
hexadecimal values for the text size. 

Download, Run 
& Debug the 
Program Using 
Insight

In this section, you will download the lcd_demo1.srec to the development 
board, launch Insight (the front end to the GNUPro Debugger), and 
perform basic debugging. 

1 Using the Nios OCI debug console, Nios Development Kit, 
Stratix Professional Edition users can also set complex data 
breakpoint triggers like breaking execution when a specific data 
value is stored to a specific address. See the First Silicon 
Solutions’ Getting Started: System Analyzer for Nios Processor Core 
for details.

The design files for this tutorial use the serial port for basic host 
communication and the JTAG port for debugging communication and for 
downloading source code (.srec). You must use the JTAG port to 
communicate with the debug module. You will use the Nios SDK Shell 
you opened in “Open the Nios SDK Shell” on page 20 to launch the debug 
console. You will open a second Nios SDK Shell for host communication.

1 If Insight does not launch properly, verify that the Safe LED is 
illuminated on the Nios development board, indicating that the 
factory reference design is loaded into the Altera FPGA.

Table 6. Files Created by nios-build

File Description

lcd_demo1.c.o Linked object file (.s.o for Assembly language files). 

lcd_demo1.nm Provides a list of all symbols in the program.

lcd_demo1.out Binary output.

lcd_demo1.objdump Interleaved source code and disassembly from .out.

lcd_demo1.srec Binary output in S-record format.
22 Altera Corporation



Nios Software Development Tutorial Tutorial

Tutorial

2

Before starting this section of the tutorial, reset the system by pressing and 
holding SW0 on the Nios development board while pressing and 
releasing the CPU reset button. This action brings up the system with the 
GERMS monitor waiting for commands (instead of running the web 
server from the factory reference design).

Perform the following steps to download, run, and debug the program.

1. Choose Programs > Altera > Nios <version> > Nios SDK Shell 
(Windows Start menu) to open a second Nios SDK Shell.

2. Type the following command in the shell to enter terminal mode and 
connect to the serial port on the host PC:

nios-run –t -r r 

The –t option changes to terminal mode and the –r option forces a 
connection to the serial port. 

1 COM1 is the default port. If you are using COM2, use the 
command nios-run –t –p com2.

3. Switch to the other SDK Shell, which is in command mode (not 
terminal mode). 

4. Download lcd_demo1.srec (via JTAG) to the Nios development 
board and launch Insight by typing one of the following commands 
(Figure 4 shows the GUI):

nios-debug lcd_demo1.srec r 
nios-debug lcd_demo1.out r 

lcd_demo1 is loaded into the program memory, which is at address 
0x800000 for Stratix and Cyclone example designs. The nios-debug 
command automatically sets a software breakpoint at main() 
denoted by the red square in the left margin.

You can use the nd command instead of nios-debug. To learn more 
about the nios-debug command options, type nios-debug --help 
r at the Nios SDK Shell prompt or refer to the Nios Embedded 
Processor Software Development Reference Manual.
Altera Corporation 23



Tutorial Nios Software Development Tutorial
Figure 4. GnuPro Insight with lcd_demo1 Loaded

The line highlighted in green is the next line of code that will be 
executed. Green indicates that Insight is properly connected to the 
CPU. 

If the highlight is purple, there is a communication problem and you 
will not be able to perform debugging. Close Insight, verify that the 
board and cables are connected properly, and relaunch Insight using 
the nios-debug command. When launching Insight, the nios-debug 
utility prints status messages that can help you determine why it 
cannot connect.

Commands for executing and stepping through code are located in 
the Control menu. Alternatively, you can use the task bar buttons 
(see Figure 5).
24 Altera Corporation



Nios Software Development Tutorial Tutorial

Tutorial

2

Figure 5. Insight Task Bar Button for Executing Code

The Insight task bar buttons are described below.

– Run—The Run button lets you select a new program to debug. 
For Nios debugging, a script is always used to select the 
program; therefore, you do not need to use this button.

– Stop—The Run button turns into the Stop button during code 
execution. The Stop button stops the code execution.

– Step—The Step button steps to the next executable line of the 
source code; steps into called functions. 

– Next—The Next button steps to the next executable line of the 
source code in the current file; steps over called functions.

– Finish—The Finish button finishes execution of the current 
subroutine. If the Finish button is selected while in a function, it 
finishes the function and returns to the line that called the 
function. 

– Continue—The Continue button continues execution until a 
breakpoint, watchpoint, or other exception is encountered, or 
when execution is complete.

– Step Assembly Inst—The Step Assembly Inst button steps to 
the next assembler instruction. It steps into subroutines.

– Next Assembly Inst—The Next Assembly Inst button steps to 
next assembler instruction. It executes subroutines and steps to 
the subsequent instruction. 

5. Breakpoints signal (to the debugger) a stopping point in the code. Set 
a software breakpoint on line 23 by clicking the hash mark in the left 
margin next to line 23. A red square appears, which indicates that 
the breakpoint is set. 

You can set a breakpoint on any line that has a ‘-’ in the left margin.

You can disable breakpoints in the Breakpoints Window (View 
menu). When a breakpoint is disabled, the square in the left margin 
is black.

Run/Stop

Step

Next

Finish

Continue

Step Assembly 
Inst

Next Assembly 
Inst
Altera Corporation 25



Tutorial Nios Software Development Tutorial
6. Begin program execution by clicking Continue. This action causes 
the processor to run until a breakpoint, or other exception is reached 
or execution completes. The processor stops at the breakpoint you 
set at line 23 and this line is highlighted in the GUI. The following 
line displays in the Nios SDK Shell (in terminal mode):

Now running lcd_demo1.

7. Click Step to step into the printf function on line 23. The source 
window opens the nios_printf.c file and highlights the first 
executable line of code in the nr_printf routine.

8. Click Step to step into the PrivatePrintf routine. The source window 
opens nios_sprintf.c and highlights the first line of executable code 
in the PrivatePrintf routine.

9. Click Next to step through a few instructions. Unlike Step, Next 
does not step into subroutine calls.

10. Click Continue to continue running the program. The following 
lines display in the other Nios SDK Shell (the one in terminal mode 
not command mode):

Press the buttons (not the reset!) to 
interrupt the program and show the time.

After these messages, the * character prints continuously while the 
program runs. The following 3 messages continuously scroll across 
the LCD screen:

Hello! This is Nios. 
Your message goes here! 
You could show another message, too.

Because there are no more breakpoints and the program is in a 
continuous while loop, the program runs until you click Stop. 

Insight provides many views into your system. You can access the 
views via the View menu or the View task bar. Figure 6 shows the 
View task bar and the function of each button.
26 Altera Corporation



Nios Software Development Tutorial Tutorial

Tutorial

2

Figure 6. Insight Task Bar View Options

The Insight task bar view windows are described below: 

– Open Console—The Open Console window provides the 
traditional command-line interface to GDB, and is very similar to 
the command-line you see when GDB is run with the -nw option.

– View Breakpoints—The View Breakpoints window lists the 
breakpoints that exist in the program and facilitates modifying 
(i.e., making them temporary or normal, disabled or enabled) 
and removing breakpoints. 

– View Local Variables—The View Local Variables window 
displays all local variables in scope. You can use it to visualize 
and edit local variables.

– Set Watch—You can use the Set Watch expressions window to 
inspect and edit any expression, i.e., including global variables, 
static variables, local variables, function arguments, and 
registers.

– View Stack—The View Stack window allows you to view the 
call stack frame and jump between levels of the stack frame.

– View Memory Contents—The View Memory Contents 
window allows you to display and edit memory contents.

– View Registers—The View Registers window lists all of the 
registers and their contents for the selected stack frame. It 
permits viewing the contents of registers in different formats, 
and editing register values and some display customizations. 
The View Registers window updates the register contents in the 
display to match the stack frame currently being viewed in the 
Source Window and Stack Window.While the program is 
running you cannot open a new view window and the value of 
the items in the windows will not change. You must stop the 
program to open a new window or examine the current value of 
any item in a window.

11. Stop the program by clicking Stop.

View

View

View

Set

View

View

Open
ConsoleRegisters

Memory
Contents

Stack

Watch

Local
Variables

Breakpoints
Altera Corporation 27



Tutorial Nios Software Development Tutorial
12. Choose Registers (View menu). The Registers window opens 
showing all of the registers and their current values. 

13. Choose Memory (View menu). The Memory window opens 
showing the contents of the memory at the current instruction 
address. 

14. Choose Local Variables (View menu). The Local Variables window 
opens showing all of the local variables and their current values.

15. Step through a few lines of code (if the program stops in Assembly 
Language code, click the Step Assembly or Next Assembly button) 
and observe the values of the registers, memory and local variables 
change. Any item that changes value is highlighted in blue.

In the following steps, you will use the Memory window to write to LEDs 
D0 through D7 on the Nios development board. You can find the base 
address (0x920980) of the PIO peripheral for the LEDs (na_led_pio) in the 
excalibur.h file in the <CPU name>_sdk/inc directory. 

f Refer to the Nios PIO Peripheral Data Sheet for more information on the PIO 
registers.

1. Type 0x920980 in the Memory window’s Address box.

2. Press Enter to display the contents of this memory location.

3. Choose Preferences (Addresses menu). The Preferences window 
opens

4. Choose Byte from the Size list box and click OK. The Memory 
window displays the contents in byte alignment. This view makes it 
easier to edit the memory contents for the 8-bit PIO.

5. Type 0x55 in address location 0x920980, which is the address of the 
data register for na_led_pio.

6. Press Enter to write the value to memory.

1 After you press Enter, the value in address location 
0x920980 reverts to 0xff. The value reverts because the PIO 
is output only and you cannot read the contents, you can 
only write to them.

The even-numbered LEDs from D0 to D7 should be illuminated. 

7. Click Continue.
28 Altera Corporation



Nios Software Development Tutorial Tutorial

Tutorial

2

8. Press any of the pushbuttons SW0 through SW3 on the Nios 
development board and watch the LCD screen display the following 
message:

The time is now <time in milliseconds>

9. Close the Insight debugger to continue with the rest of the tutorial. 
The Nios SDK Shell returns to command mode. Leave both Nios 
SDK Shell windows open to perform the steps in the following 
section.

1 If you wish to reload the program and restart the debugging 
session, you should exit Insight and use the nios-debug 
command again from the Nios SDK Shell prompt. See Step 4 on 
page 23.

Download, Run 
& Debug the 
Program Using 
the Nios OCI 
Debug Console

In this section, you will download the lcd_demo1.srec to the development 
board, launch the Nios OCI Debug Console (debug console), and perform 
basic debugging from the debug console. The Nios OCI Debug Console 
allows you to perform basic debugging using a command-line interface, 
similar to a debug monitor interface.

In addition to performing basic debugging, Nios Development Kit, Stratix 
Professional Edition users can also set complex data breakpoint triggers 
like breaking execution when a specific data value is stored to a specific 
address. See the First Silicon Solutions’ Getting Started: System Analyzer for 
Nios Processor Core for details.

The design files for this section use the serial port for basic host 
communication and the JTAG port for debugging communication. You 
must use the JTAG port to communicate with the Nios OCI Debug 
Module. You will use the Nios SDK Shell you opened in “Open the Nios 
SDK Shell” on page 20, which is in command mode to launch the debug 
console. You will open a second Nios SDK Shell for host communication.

1 You should have two Nios SDK Shell windows open. If you do 
not, choose Programs > Altera > Nios <version> > Nios SDK 
Shell (Windows Start menu) twice to open two Nios SDK shells.

Perform the following steps to download, run, and debug the program.

1. Type the following command in the shell to enter terminal mode and 
connect to the serial port on the host PC:

nios-run –t -r r 
Altera Corporation 29



Tutorial Nios Software Development Tutorial
1 COM1 is the default port. If you are using COM2, use the 
command nios-run –t –p com2.

2. Switch to the other SDK Shell, which is in command mode (not 
terminal mode). 

3. Download lcd_demo1.srec (via JTAG) to the Nios development 
board and launch the debug console by typing the following 
command (Figure 7 shows the debug console):

nios-console lcd_demo1.srec r 

The nios-console command downloads the lcd_demo1 program to 
the Nios development board and sets the program counter (pc) to 
the start address indicated in the .srec, which is 0x800278 for this 
design.

1 You can type nc instead of nios-console. To learn more 
about the nios-console command options, type  
nios-console --help at the Nios SDK Shell prompt or 
refer to the Nios Embedded Processor Software Development 
Reference Manual.

Figure 7. Nios OCI Debug Console

Table 7 describes some useful debug console commands with a brief 
description. You will use some of these commands in this tutorial.
30 Altera Corporation



Nios Software Development Tutorial Tutorial

Tutorial

2

Unless stated otherwise, you should execute the commands in the 
following steps at the debug console prompt.

4. To run lcd_demo1, type the following commands at the debug 
console:

go r 

After you type the commands, the following lines print to the Nios 
SDK Shell in terminal mode:

Now running lcd_demo1. 
Press the buttons (not the reset!) to 
interrupt the program and show the time.

After these messages, the * character prints continuously while the 
program runs. The following 3 messages continuously scroll across 
the LCD screen:

Hello!          This is Nios. 
Your message goes here! 
You could show   another message, too.

5. Press any of the pushbuttons SW0 through SW3 on the Nios 
development board and watch the LCD screen display the following 
message:

The time is now <time in milliseconds>

Table 7. Debug Console Commands

Command Description

go Starts executing instructions at the current program counter (pc) address.

help Used to get help on any command. The usage is help <command>.

halt Stops the processor.

reset Resets the processor.

pc Allows you to view the current value of the program counter and change its value.

regs Allows you to view the registers and change their values.

step Steps through the code.

bkpt Sets breakpoints.

dump Displays the memory contents.

byte, half, word Writes to memory.
Altera Corporation 31



Tutorial Nios Software Development Tutorial
6. Set a software breakpoint at 0x80002e by typing the following 
command at the debug console prompt:

bkpt setsw 0x80002e r 

7. Using your favorite text editor, open the lcd_demo1.objdump file in 
the SDK src directory. You should see that address 0x80002e contains 
the first instruction for printing the text “Press the buttons (not the 
reset!) to”. Therefore, the next time you run lcd_demo1, the system 
should stop immediately before printing this text.

8. Stop the processor by typing the following command:

halt r 

9. Move the pc to the beginning of lcd_demo1 and rerun lcd_demo1 by 
typing the following commands:

pc 0x800000 r 
go r
The following text appears in the debug console:

Emulation started. 
Software breakpoint. 
0080002E  988A pfx %hi(0x1140) 
00800030  3608 movi %o0,0x10

The following text appears in the Nios SDK Shell:

Now running lcd_demo1.

The processor has been stopped at the breakpoint.

10. Examine the registers by typing the following command:

regs r

11. Step through the code by executing the step command 4 times in the 
debug console. After every step command, the debug console shows 
the instruction to which you are stepping. You can compare this 
output to the lcd_demo1.objdump to follow the program execution. 
Sometimes stepping causes the pc to move ahead 2 instructions 
because the PFX instruction is combined with the following 
instruction; therefore, the 2 instructions act as one. See the Nios 
Embedded Processor 32-bit Programmer’s Reference Manual for details.
32 Altera Corporation



Nios Software Development Tutorial Tutorial

Tutorial

2

1 You can step a specific number of instructions by typing 
“step <number>” (1 is the default).

12. Type the following command to continue running the program:

go r
13. Stop the processor by typing halt r at the debug console prompt.

14. Type the following command to clear the breakpoint:

bkpt clear 0x80002e r

15. You can confirm that the breakpoint was cleared by typing bkpt r at 
the prompt. This command list all of the breakpoints.

1 The command bkpt clear all r clears all breakpoints.

16. Write the half word value 0xe8cf to the 7-segment LED by typing the 
following command at the debug console prompt:

half 0x920990 0xe8cf r
The 7-segment LED display shows the pattern hI. This command 
writes the half word (16-bit) value 0xe8cf to the memory location 
0x920990, which is the data register for the PIO peripheral connected 
to the 7-segment LED. 

You can find the base address (0x920990) of the PIO peripheral for 
the 7-segment LED peripheral (na_seven_seg_pio) in the 
excalibur.h file in the <CPU>_sdk/inc directory. Refer to the Nios 
PIO Peripheral Data Sheet for more information on the PIO registers. 

Rebuild the 
Software

If you want to change your software, perform the following steps. You can 
leave the Nios SDK Shell that is in terminal mode open while going 
through these steps.

1. Close the debug console window by typing exit r.

2. Modify the code. For this tutorial design, you can modify the 
lcd_demo1.c file and change the messages that display on the LCD 
screen.

3. Rebuild the code using nios-build (step 3 in “Compile a Program” 
on page 21).
Altera Corporation 33



Tutorial Nios Software Development Tutorial
4. Redownload the .srec and start the debugger using the nios-debug 
or nios-console command.

Download the 
Software to 
Flash

In this section you will download the program to flash so that it executes 
after the system boots. You should place your code in the user software 
portion of the flash memory, which is located at 0x40000 (flash base 
address plus 0x40000). The srec2flash utility creates a flash file containing 
your code and a routine that copies your code to SRAM (the program 
memory address) before it is executed.

1. Convert the .srec to a .flash by typing the following command at the 
Nios SDK shell prompt:

srec2flash lcd_demo1.srec r 

This command creates the file lcd_demo1.flash, which you can 
download to the user software portion of the flash memory on the 
Nios development board. 

1 You can also use a Hexadecimal (Intel-Format) Output File 
(.hexout). Refer to “Appendix—Using a .hexout” on page 37 
for more information.

2. Download the flash file by typing the following command:

nios-run –x lcd_demo1.flash r 

The –x option causes the Nios SDK Shell to exit terminal mode when 
the download completes.

If you receive a message about not being able to open COM1, type 
Ctrl-C to make sure you have exited any other terminal mode you 
may have running Nios SDK Shells. 

3. Reset the system by pressing the CPU Reset button on the Nios 
development board. After the system boots, lcd_demo1 is copied to 
SRAM and executed. The lcd_demo1 program execute in the same 
manner as when you downloaded it directly to SRAM using the 
nios-run command with the -x option.

f For more information on the srec2flash utility, refer to the Nios Embedded 
Processor Software Development Reference Manual.
34 Altera Corporation



Nios Software Development Tutorial Tutorial

Tutorial

2

Third-Party 
Development & 
Debug Tools

Several third-party development and debugging tools are available for 
use with the Nios development kit. For more information, refer to the 
Quick Start Guide for Third-Party Development Tools that was included with 
the Nios development kit. More information is also available at 
www.altera.com/nios.
Altera Corporation 35

http://www.altera.com/nios




Altera Corporation
Appendix—Using a .hexout

Appendix

3

A Hexadecimal (Intel-Format) Output File (.hexout) can be stored in flash 
and can configure an Altera device. Upon power-up, a configuration 
controller on the Nios development board attempts to load the Altera 
device with the user hardware portion of the flash, 0x600000 - 0x6FFFFF. 
If this attempt is unsuccessful, it loads the Altera device with the factory 
image at 0x700000 - 0x7AFFFF. Therefore, you should always place your 
hardware image beginning at 0x600000 – 0x6FFFFF. The hexout2flash 
utility automatically creates a flash file, which places the hardware image 
at this address.

The following steps illustrate how to download a .hexout of the 
standard_32 reference design to the flash device on the Nios development 
board.

1. Change to the software tutorial directory by typing the following 
command at the Nios SDK Shell prompt:

cd ../tutorials/Nios_SW_Tutorial_<device family>_<device> r 

2. Convert the standard_32.hexout to .hexout.flash by typing the 
following command:

hexout2flash standard_32.hexout r 

The hexout2flash utility converts the .hexout to a .hexout.flash, 
which you can download to the flash on the Nios development 
board. After you execute the hexout2flash command, it creates 
standard_32.hexout.flash in the current directory.

3. Download the standard_32.hexout.flash file to the user hardware 
portion of flash by typing the following command:

nios-run -x standard_32.hexout.flash r 

It takes a few minutes to download the file. The -x option exits 
terminal mode after the download completes

4. Reset the Nios development board so the configuration controller 
loads the new image into the Altera device.
 37



Appendix—Using a .hexout  Nios Software Development Tutorial
5. Verify that the new image was loaded into the FPGA by checking 
that the user LED on the Nios development board is illuminated.
38 Altera Corporation



Altera Corporation
You can use other 
methods, besides the 
ones described in this 
tutorial, to communicate 

Appendix—Other Board 
Communication & Debug
Appendix

3

You can use other methods besides the ones described in this tutorial, to 
communicate with the Nios development board and debug Nios systems. 
You can use the serial or JTAG ports for communication; the hardware 
design determines which one you use. The Nios SDK Shell  
nios-run utility checks the Primary Serial Port setting in SOPC Builder to 
determine which serial port (or JTAG) to use for stdio and GERMS 
communication.

nios-debug defaults to using JTAG for downloading if the Nios OCI 
Debug Module is enabled. You can override this default with the  
-gdb = comX and -p = comX options, where X is the COM port number.

If you only have a serial port on your host machine, you can use the 
GERMS monitor with the GNU Debugger (GDB) (or the GUI version 
called Insight) for debugging. This appendix describes how to connect to 
GDB using serial communication. The steps for debugging are the same 
once the host and target are connected.

GERMS 
Monitor

The Nios development kit includes the GERMS monitor program, which 
provides basic facilities for communicating with any development board, 
including reading and writing to memory, downloading software code 
and instructing the CPU to begin executing code at a particular address. 
The GERMS monitor also controls the boot process. The Altera-provided 
Nios reference designs contain a GERMS monitor in on-chip memory. 

f Refer to the Nios Embedded Processor Software Development Reference Manual 
for more information.

Insight: GNU 
Debugger

Insight is the visual debugger included with the GNUPro tools, which are 
installed with the Nios development kit. Insight provides a graphical 
user-interface alternative to the command-line interface of GDB. The 
Insight debugger works with GDB and lets you see inside a program 
while it executes. This section describes how to use GDB and Insight using 
serial communication. To view host communication during debugging, 
open a Nios SDK Shell and enter terminal mode using the command  
nios-run -t.
 39



Appendix—Other Board Communication & Debug  Nios Software Development Tutorial
To drive Insight using the menu, follow these steps:

1 Set the debug communications UART to a baud rate of 115,200.

1. Build your code with the GDB stub using the following command:

nios-build -d hello_nios.c r 

2. Download a standalone version of GDB with a breakpoint at main:

nios-run -x ../lib/nios_gdb_standalone.srec r 

The -x option exits terminal mode.

3. Invoke Insight:

nios-elf-gdb r 

4. Set up your project: 

a. Choose Open (File menu).

b. Select hello_nios.out.

c. Choose Source (File menu).

d. Select setup.gdb.

1 An example setup.gdb script is shown in Figure 8. It sets the 
architecture and adds the inc and lib directories. Altera 
recommends that you create a setup.gdb script, which 
ensures that you have installed and are using the correct 
Cygwin version. (The nios-debug -s option creates a .gdb 
script in the current directory.)  
 
If you are targeting a 16-bit Nios system, you should change 
the first line to target nios16 and lines 2 and 3 should point 
to the m16 directory. The directory on line 3 may change for 
different versions of SOPC Builder (if a new version of 
Cygwin is included).
40 Altera Corporation



Nios Software Development Tutorial  Appendix—Other Board Communication & Debug

Appendix

3

Figure 8. Setup GDB Script

set architecture nios32
dir /cygdrive/c/altera/kits/nios/bin/nios-gnupro/nios-elf/lib/m32
dir /cygdrive/c/altera/kits/nios/bin/nios-gnupro/lib/gcc-lib/nios-elf/2.9-nios-
010801-20030227/m32
dir ../lib
dir ../inc
dir .

e. Choose Target (File menu).

f. In the Target Selection dialog box, ensure that the following 
parameters are appropriately set (see Figure 9):  
 
Target: Remote/Serial 
Baud Rate: <baud rate of debug port> 
Port: <debug port>

g. Click OK.

Figure 9. Target Selection Dialog Box

You are now ready to debug your code.

1 For information on using Insight and GDB, refer to the GNUPro 
Toolkit documentation in the Nios Development Kit documents 
directory.

Gprof: GNU 
Profiler

Gprof is the GNU profiler. You can use profiling to learn where the 
program spends time and which function called another function during 
execution. This information reveals the sections of code that are slower 
than expected and that you may want to rewrite for faster code execution. 
Gprof can also show which functions are being called more or less often 
than you expected, helping you find bugs that may otherwise go 
unnoticed. 
Altera Corporation 41



Appendix—Other Board Communication & Debug  Nios Software Development Tutorial
Because Gprof uses information collected during the actual execution of 
your program, you can use it on programs that are too large or too 
complex to analyze by reading the source code. However, how you run 
your program affects the information that shows up in the profile data. 
For example, if you don’t use a program’s feature while it is being 
profiled, profile information is not generated for that feature. 

f For more information on Gprof, go to: 
www.sources.redhat.com/binutils/docs-2.10/gprof.html.

Requirements

Gprof requires the following items: 

■ A full-featured timer, named timer1, which cannot be used 
anywhere else in your code. 

■ A UART to download profiling information to your PC. The UART 
can be shared because it is only needed after the user’s program is 
complete. 

■ Because the profiling data is downloaded after the user’s program is 
complete, the program must exit normally. 

■ Extra memory to store the profiling data. The amount of memory 
needed depends on your profile settings. Using the default settings, 
a 32-bit Nios system needs an extra 100% of code size of memory and 
a 16-bit Nios system would need an extra 25%.

Debugging Code with Gprof 

This section describes an example using Gprof. The example assumes you 
are attempting to profile the Dhrystone benchmark program, dhry.c. To 
use Gprof, first compile the program in the Nios SDK Shell with the gcc 
compiler option -pg: 

nios-build dhry.c -cc -pg r 

The file nios_gprof.c is included in your compilation. The program 
provides two operations.

■ The profiling code keeps track of the function calls. Using the -pg 
command, the compiler adds a call to _mcount at the beginning of 
each function, including main(), and interrupts the user code at a 
specific rate. The first call to mcount() sets up all the data structures, 
buffers, and the interrupt service routine. Subsequent calls trace the 
calling sequence.
42 Altera Corporation



Nios Software Development Tutorial  Appendix—Other Board Communication & Debug

Appendix

3

■ The profiling code keeps track of the amount of time spent in each 
function using a timer named timer1 that periodically samples the 
program counter. The rate of sampling is set in nios_gprof.c by the 
constant TIMER_SAMPLE_RATE (the default sampling rate is 10,000), 
in interrupts per second. Each timer interrupt increments one of 
many buckets, which represent ranges of code memory (i.e., code 
chunk size). 

To use Gprof, perform the following steps:

1. Use the | tee option to download the program and run the .srec 
while copying the screen output from the PC to a text file. For 
example:

nios-run dhry.srec | tee dhry.txt r 

Besides the standard output of your code, profiling data is also 
output, preceded by three pound symbols (i.e., ###).

1 Your program will run much slower due to the large 
number of interrupts caused by the profiling code.

2. Convert the text file into a gmon.out file using the Perl script nios-
gprof-convert. This script converts the data preceded by ### to 
binary and saves it to the file gmon.out. For example:

nios-gprof-convert dhry.txt r 

3. Run nios-elf-gprof on the objfile and gmon.out, directing the 
output to the profile file: 

nios-elf-gprof –C –q dhry.out gmon.out > 
    dhry.profile r 

The Gprof example uses the following options:

■ -C—If you include this option, Gprof prints a list of functions and the 
number of times each was called. 

■ -q—If you use this option, the call graph shows which functions 
called it, which other functions it called, and how many times (see 
Figure 10). It also estimates how much time was spent in the 
subroutines of each function. You can use this information to find 
function calls that use a lot of time. 
Altera Corporation 43



Appendix—Other Board Communication & Debug  Nios Software Development Tutorial
Gprof provides two additional output formats. To use either one, replace 
the -q option with one of the following options (see Figures 10 through 
12): 

■ -p—The flat profile option shows how much time your program 
spent in each function, and how many times that function was called. 
If you simply want to know which functions burn most of the cycles, 
it is stated concisely here. 

■ -A—The annotated source listing option is a copy of the program’s 
source code, labeled with the number of times each line of the 
program was executed. 

f For more information and a full description of all the options available, 
refer to the GNU Gprof manual, at 
www.sources.redhat.com/binutils/docs-2.10/gprof.html.

Keep the following items in mind when reading the profiling data:

■ Time is calculated in ticks, not seconds. Divide time by 
TIMER_SAMPLE_RATE (default is 10,000) for seconds.

■ Functions from nios_gprof.c are included in your profile, for 
example:
– -internal_mcount
– -sbrk
44 Altera Corporation



Nios Software Development Tutorial  Appendix—Other Board Communication & Debug

Appendix

3

Figure 10. Profile Data for dhry.c Using Call Graph (-C Option)

granularity: each sample hit covers 4 byte(s) for 0.37% of 267.00 seconds

                                  called/total       parents 
index  %time    self descendents  called+self    name    index
                                  called/total       children

                                                     <spontaneous>
[1]     48.3  129.00        0.00                 internal_mcount [1]
-----------------------------------------------
               16.00       42.50       1/1           _past_main [3]
[2]     21.9   16.00       42.50       1         main [2]
                9.00        8.50     100/100         Proc_1 [5]
                6.00        1.67     100/100         Func_2 [9]
                6.00        0.00     100/100         Proc_8 [10]
                4.00        0.00     100/100         Proc_2 [14]
                3.33        0.00     200/300         Func_1 [12]
                2.50        0.00     100/100         Proc_4 [20]
                1.00        0.00     100/100         Proc_5 [22]
                0.50        0.00     100/300         Proc_7 [21]
-----------------------------------------------
                                                     <spontaneous>
[3]     21.9    0.00       58.50                 _past_main [3]
               16.00       42.50       1/1           main [2]
-----------------------------------------------
                                                     <spontaneous>
[4]      7.5   20.00        0.00                 nios_mcount [4]
-----------------------------------------------
                9.00        8.50     100/100         main [2]
[5]      6.6    9.00        8.50     100         Proc_1 [5]
                3.50        0.50     100/100         Proc_3 [15]
                4.00        0.00     100/100         Proc_6 [16]
                0.50        0.00     100/300         Proc_7 [21]
-----------------------------------------------
                                                     <spontaneous>
[6]      6.4   17.00        0.00                 _sbrk [6]
-----------------------------------------------
                                                     <spontaneous>
[7]      4.1   11.00        0.00                 sbrk [7]
-----------------------------------------------
                                                     <spontaneous>
[8]      3.7   10.00        0.00                 strcmp [8]
-----------------------------------------------
                6.00        1.67     100/100         main [2]
[9]      2.9    6.00        1.67     100         Func_2 [9]
                1.67        0.00     100/300         Func_1 [12]
-----------------------------------------------
                6.00        0.00     100/100         main [2]
[10]     2.2    6.00        0.00     100         Proc_8 [10]
-----------------------------------------------
                                                     <spontaneous>
[11]     2.1    5.50        0.00                 sbrk_done [11]
-----------------------------------------------
Altera Corporation 45



Appendix—Other Board Communication & Debug  Nios Software Development Tutorial
Figure 11. Profile Data Using Flat Profile (-p Option)

granularity: each sample hit covers 4 byte(s) for 0.06% of 1733.00 seconds

  %   cumulative   self              self     total           
 time   seconds   seconds    calls  ms/call  ms/call  name    
 81.5    1412.00  1412.00                             txCharWait [1]
  6.5    1524.00   112.00                             internal_mcount [2]
  2.0    1558.00    34.00                             PrivatePrintf [5]
  1.6    1586.00    28.00                             nios_mcount [6]
  1.3    1608.00    22.00                             _sbrk [7]
  0.9    1623.00    15.00                             sbrk [9]
  0.9    1638.00    15.00                             udivmodsi4 [10]
  0.8    1652.00    14.00        1 14000.00 54000.00  main [3]
  0.8    1666.00    14.00                             strcmp [11]
  0.6    1676.00    10.00      100   100.00   163.33  Proc_1 [8]
  0.5    1684.00     8.00      100    80.00    90.00  Func_2 [12]
  0.4    1691.50     7.50                             nr_uart_txchar [13]
  0.3    1696.50     5.00      100    50.00    50.00  Proc_8 [14]
  0.3    1701.50     5.00                             __mulhi3 [15]
  0.2    1705.50     4.00                             __divsi3 [16]
  0.2    1708.50     3.00      300    10.00    10.00  Func_1 [18]
  0.2    1711.50     3.00      100    30.00    30.00  Proc_2 [19]
  0.2    1714.50     3.00      100    30.00    36.67  Proc_3 [17]
  0.2    1717.50     3.00                             strlen [20]
  0.1    1719.50     2.00      300     6.67     6.67  Proc_7 [21]
  0.1    1721.50     2.00      100    20.00    20.00  Proc_4 [22]
  0.1    1723.50     2.00      100    20.00    20.00  Proc_5 [23]
  0.1    1725.50     2.00      100    20.00    20.00  Proc_6 [24]
  0.1    1726.50     1.00                             DoDisableTimerInterrupt [25]
  0.1    1727.50     1.00                             __udivsi3 [29]
  0.1    1728.50     1.00                             printf [26]
  0.1    1729.50     1.00                             sbrk_done [27]
  0.1    1730.50     1.00                             sbrk_stillRoom [28]
  0.0    1731.00     0.50                             rxCharA [30]
  0.0    1731.00     0.00      100     0.00     0.00  Func_3 [31]
46 Altera Corporation



Nios Software Development Tutorial  Appendix—Other Board Communication & Debug

Appendix

3

Figure 12. Profile Data in Annotated Source (-A Option)

Proc_2 (Int_Par_Ref)
                /******************/
                    /* executed once */
                    /* *Int_Par_Ref == 1, becomes 4 */               
                One_Fifty   *Int_Par_Ref;
         100 -> {
                  One_Fifty  Int_Loc;  
                  Enumeration   Enum_Loc;
              
                  Int_Loc = *Int_Par_Ref + 10;
                  do /* executed once */
                    if (Ch_1_Glob == 'A')
                      /* then, executed */
                    {
                      Int_Loc -= 1;
                      *Int_Par_Ref = Int_Loc - Int_Glob;
                      Enum_Loc = Ident_1;
                    } /* if */
                  while (Enum_Loc != Ident_1); /* true */
                } /* Proc_2 */

                
                Proc_3 (Ptr_Ref_Par)
                /******************/
                    /* executed once */
                    /* Ptr_Ref_Par becomes Ptr_Glob */               

                Rec_Pointer *Ptr_Ref_Par;                

         100 -> {
                  if (Ptr_Glob != Null)
                    /* then, executed */
                    *Ptr_Ref_Par = Ptr_Glob->Ptr_Comp;
                  Proc_7 (10, Int_Glob, &Ptr_Glob->variant.var_1.Int_Comp);
                } /* Proc_3 */

                Proc_4 () /* without parameters */
                /*******/
                    /* executed once */
         100 -> {
                  Boolean Bool_Loc;   

                  Bool_Loc = Ch_1_Glob == 'A';
                  Bool_Glob = Bool_Loc | Bool_Glob;
                  Ch_2_Glob = 'B';
                } /* Proc_4 */

                Proc_5 () /* without parameters */
                /*******/
                    /* executed once */
         100 -> {
                  Ch_1_Glob = 'A';
                  Bool_Glob = false;
                } /* Proc_5 */
Altera Corporation 47



Appendix—Other Board Communication & Debug  Nios Software Development Tutorial
Changing Gprof Settings

In some instances, the Gprof settings are not suitable to profile user code. 
You can manipulate the sampling rate and code chunk size parameters by 
editing nios_gprof.c in the <installation directory>/sdk/lib directory. 

The sampling rate is set by the constant TIMER_SAMPLE_RATE (default is 
10,000) in interrupts per second. If the interrupt rate is too fast (i.e., 
causing counters to overflow), decrease the sampling rate. If the interrupt 
rate is too slow (i.e., causing non- repeatable, coarse results), increase the 
sampling rate. 

Each timer interrupt increments one of many buckets, which represent 
ranges of code memory (code chunk size), defined by HISTFRACTION. 

■ The default for a 32-bit Nios system is 2 bytes for a code chunk size 
(i.e., HISTFRACTION is 2), which is a single Nios instruction. This 
setting increases your data memory footprint by 100% of your code 
size. 

■ The default for a 16-bit Nios system is 8 bytes (due to memory 
restrictions) for a code chunk size, which is four Nios instructions. 
This setting causes the counter buffer to equal 25% of code size.

You can use a larger code chunk size (i.e., set HISTFRACTION to 16); 
however, the negative effect is that the profile occasionally attributes a 
sample to a different function than the program counter was actually in. 
However, using a larger code chunk size has the positive effect of 
reducing the amount of required memory.

To implement these changes, edit the sdk/lib/nios_gprof.c file, and  
re-create the library by typing make all r in the lib directory. 

1 You can exclude code from profiling by compiling different 
modules with or without the -pg option. For example, if a 
program consists of my_main.c, mod_1.c, and mod_2.c, and the 
critical elements to profile are in mod_1.c, compile the modules 
my_main.c and mod_2.c without the -pg option, and compile 
mod_1.c with the -pg option.

References Reference documents for this appendix include:

■ GNU Gprof Profiler Manual, Rev.
■ Debugging with GDB: The GNU Source-Level Debugger
48 Altera Corporation



Altera Corporation
Appendix—Nios 
SDK Shell Tips
Appendix

3

The following tips make using the Nios SDK Shell easier.

Changing to the SDK Directory

The Nios SDK Shell opens to the /altera/kits/nios/examples directory by 
default. To change to SDK src directory for this tutorial, type the following 
command:

cd ../tutorials/nios_sw_tutorial_cyclone_1c20/cpu_sdk/src r 

Keystroke Shortcuts

The Nios SDK Shell supports command completion of unique commands 
with the Tab key and pattern matching with the * key. Therefore, instead 
of typing a whole string, you can type a few letters. For example:

■ Instead of typing the word tutorials, type tut and press the Tab 
key.

■ Instead of typing <CPU>_sdk, type *sdk.

Using these keyboard shortcuts, the keystrokes needed to change to the 
Nios tutorial directory are:

cd ../tut<press the Tab key>Nios_SW<press the Tab key>/*sdk/src r 

Utility Usage Shortcuts

You can use the command nb instead of nios-build. For example:

nb hello_nios.c r 

You can use the command nr instead of nios-run. For example:

nr hello_nios.srec r 

You can use the command nc instead of nios-console. For example:

nc hello_nios.srec r 
 49



Appendix—Nios SDK Shell Tips  Nios Software Development Tutorial
You can use the command nd instead of nios-debug. For example:

nd hello_nios.srec r 
50 Altera Corporation



Altera Corporation
Index

Index

4

B

before you begin
software tutorial 19

breakpoints
Insight 25

C

commands
debug console 30

configurable processors
about 13
custom instructions 14
data and instruction caches 14
DMA 14
memory interfaces 14
multipliers 13
peripherals 14
simultaneous multi-master architecture 14

D

debug
board communication 37, 39, 49
JTAG 22, 29

debug console
bkpt 31
byte 31
commands 30
dump 31
go 31
hal 31
half 31
help 31
pc 31
regs 31
reset 31

step 31
word 31

debug tools
third-party 35

debugging
Insight 22
Nios OCI Debug Console 29
other methods 39
via Insight GUI 40
with Gprof 42

design flow 9
predesign activity 10

development board
communicating with 37, 39, 49

development flow
hardware/software 9

downloading
flash 34

F

flash
downloading to 34

G

GERMS monitor
debug 39

GNUPro debugger 39
GNUPro Toolkit 10, 12
GNUprofiler 41
Gprof 41

debugging code with 42
requirements 42
settings 48
 51



Index  Nios Software Development Tutorial
H

hardware and software requirements
software tutorial 11

hardware development flow 9

I

Insight 22
breakpoints 25
Continue task bar button 25
Finish task bar button 25
GNU Debugger 39
Next Assembly Inst task bar button 25
Next task bar button 25
Open Console task bar button 27
Run task bar button 25
Set Watch task bar button 27
Step Assembly Inst task bar button 25
Step task bar button 25
Stop task bar button 25
task bar 25
task bar view options 27
View Breakpoints task bar button 27
View Local Variables task bar button 27
View Memory Contents task bar button 27
View Registers task bar button 27
View Stack task bar button 27

J

JTAG communication 22, 29

N

nb 49
nc 49
nd 50
Nios development board

communicating with 37, 39, 49
Nios OCI Debug Console 13
Nios OCI debug console 29
Nios OCI Debug Module 12
Nios SDK Shell 13

commands 20
hexout2flash 20
nios-build 20

nios-console 20
nios-debug 20
nios-elf-gprof 20
nios-elf-objdump 20
nios-elf-size 20
nios-run 20
srec2flash 20
tips 49
using 20

nios-build
shortcut 49
software tutorial 21

nios-console
software tutorial 23, 30

nios-run
shortcut 49, 50
software tutorial 23, 29

nr 49

P

predesign activity 10
programs

running 31

R

rebuilding code
software tutorial 33

S

SDK 19
using 19

software development flow 9
software development kit 19
software tutorial

before you begin 19
compile program 21
debug program 22, 29
download program 22, 29
download to flash 34
files 12
hardware and software requirements 11
nios-build 21
nios-console 23, 30
nios-run 23, 29
52 Altera Corporation



Nios Software Development Tutorial  Index

Index

4

opening Nios SDK Shell 20
rebuilding code 33
run program 22, 29
software tools 12
third-party tools 35
using Nios SDK Shell 20

software used
software tutorial 12

SOPC Builder 10, 12
system definition 10

CPU 10
peripherals 10

system requirements 10

T

third-party
debug tools 35

tips
Nios SDK Shell 49

U

using SOPC Builder output 19
Altera Corporation 53




	About this Tutorial
	How to Find Information
	How to Contact Altera
	Typographic Conventions
	Table of Contents
	Tutorial Overview
	Hardware/ Software Development Flow
	Hardware & Software Requirements
	Tutorial Files
	Software Tools Used
	GNUPro Tools
	Nios On-Chip Instrumentation (OCI) Debug Module
	Nios OCI Debug Console
	Nios SDK Shell

	About Configurable Processor Hardware Features
	Multipliers
	Data & Instruction Caches
	Custom Instructions
	Simultaneous Multi-Master Bus Architecture & DMA
	Peripherals & Memory Interfaces

	Nios SDK
	inc Directory
	lib Directory
	src Directory

	Tutorial
	Before You Begin
	Open the Nios SDK Shell
	Compile a Program
	Download, Run & Debug the Program Using Insight
	Download, Run & Debug the Program Using the Nios OCI Debug Console
	Rebuild the Software
	Download the Software to Flash
	Third-Party Development & Debug Tools
	Appendix-Using a .hexout
	GERMS Monitor
	Insight: GNU Debugger
	Gprof: GNU Profiler
	Requirements
	Debugging Code with Gprof
	Changing Gprof Settings

	References
	Appendix-Other Board Communication & Debug
	Appendix-Nios SDK Shell Tips
	Changing to the SDK Directory
	Keystroke Shortcuts
	Utility Usage Shortcuts

	Index

