ECE 4170: Introduction to Hardware Description Languages with Applications to Digital Design

Course Content: Goals

• Understand the concepts underlying hardware description languages
 – Roles and application in digital design flows
 – Key language features: what is represented and why

• Reinforce language concepts with a significant project component
 – Place the project in the context of modern system-on-chip design

• Use VHDL as the working language
 – Introduction to competing, alternative languages
 – Understand commonality with VHDL as well as rationale for their distinct language features
Course Content: Goals (cont.)

- Learn and apply industry standards
 - Open core protocol (OCP)
 - Standard for Intellectual property (IP) integration
 - SPIRIT: standard for describing IP metadata
 - 1076.6 IEEE Standard for VHDL RTL Synthesis

- System-on-Chip project infrastructure
 - Leverage available SoC infrastructures
 - OpenRISC
 - MicroBlaze

System Architecture

Program Memory

mpeg_program.rom

OpenRISC CPU

Register File

CPU fetches program instructions

Data Memory

Input Data for processing

Data from supplied program

Results produced

Data from

mpeg_data.init

Custom Hardware

- MPEG decoder

Program and data memories initialized from files at start of simulation.
Data memory dumped to file at end.

Wishbone Bus

Base address Slave-1: 0x0000_0000
Base address Slave-2: 0x0100_0000

Program and data memories initialized from files at start of simulation.
Data memory dumped to file at end.

CPU reads, writes data

mpeg_data.init

sram0.dump

CPU reads, writes data

gpr.log
Verilog + VHDL

- Program Memory
- OpenRISC CPU
- Data Memory
- Wishbone Bus
- Custom Hardware
 - MPEG decoder
 - Vector machine
 - Encrypted I/O

In **VHDL**: Create entity for Custom Hardware
(different for each custom-hardware)

In **Verilog**: Do component-instantiation and port-map

Industry’s Challenges

- Escalating costs and time to market of silicon platforms
 - Mask costs
 - Manufacturing
 - Verification
 - Design
- Escalating design complexity
 - Number of transistors
 - Deep submicron effects
 - Application complexity in emerging markets
- Need for hardware customization
 - To concurrently meet physical, functional, and cost requirements
Industry Response

• Raise the level of design abstraction
 – Emergence of Electronic System Level (ESL) Design
 • Algorithm-based RTL synthesis

• Raise the level of hardware building blocks
 – Processors, memories, cores, etc.
 – Configurable fabrics
 – Emergence of System-on-Chip (SoC) platforms

• IP–Reuse
 – In design: For example ARC, ARM and Artisan
 – In manufacturing: For example NEC and eASIC

Semiconductor Market Drivers: 2006-2009

• Integration:
 – A byproduct of Moore’s Law

• Manufacturing
 – Emergence of design for manufacturing

• Consolidation
 – Emergence of new design processes

• Costs
 Design and IP will become the primary differentiators
Opportunity

- Emergence of derivative SoC Platforms
 - 10s of platforms but thousands of derivative platforms
 - Derivatives couple application specific logic with commodity component-based platforms

- Growth in consumer markets
 - OEMs need complete solutions to focus on product differentiation in short product development cycles

- Exploding pool of accessible embedded software developers
 - Access to geographically distributed SoC IP generation capability

- Fragmented derivative SoC development flow
 - Weak link between ESL and RTL for design
 - Fragmented software development tool chain and environment

Major Market Drivers

- Consumer
 - Home entertainment, cell phones, intelligent imaging, gaming

- Communications
 - Wireless, VoIP, video conferencing, cell phones

- Emphasis on power/performance balance

- New (commodity) design processes that
 - Make use of distributed intellectual capital → lower the expertise barrier
 - Collaboration (horizontal) is more important than top-down control (vertically directed) of design
 - Open source & standards (C, Spirit, OCP, etc) is the vehicle
 - Design/IP is the driver/differentiator rather than manufacturing
Landscape

Design NRE Effort

- Decreasing Customization
- Increasing NRE and Time to Market

- **Hardware-Based**
 - Custom ASIC
 - Structured ASIC
 - FPGA
 - Configurable Fabrics
 - Tiled architectures

- **Algorithm-Based Design Flow**

- **Software-Based**
 - Fixed + Variable ISA
 - Microprocessor

Market Sizes

- **ASICs will outgrow semiconductor industry 2006 (Gartner)**
 - One-third will be structured ASICs by 2008
 - $2B market by 2007
 - Altera and LSI Logic are market leaders
 - ~$200M - $300M tools market

- **Electronic System Level (ESL) design tools will be $1.6B by 2009 (Gartner)**
 - Companies reliance in internal ESL tools increased 33% in 2005

- **Capture 10%-20% of the FPGA market**
 - ~$5B in 2007
The Challenge: SoC Design

- Modern System-on-Chip Design is dominated by intellectual property (IP) re-use
- Chip complexity is spread across multiple design groups in multiple companies, and even across multiple market segments
- Large fraction of time is spent on integration and testing → emergence of industry standards for IP integration

Example

From M. Jacome, UT Austin
Course Logistics

- **Instructor:** Professor Sudhakar Yalamanchili
 - Class webpage for contact information: www.ece.gatech.edu/users/sudha/4170/Spring2007
 - Recommended Text: *VHDL: From Simulation to Synthesis*, S. Yalamanchili, Prentice Hall (pubs.)
 - The following will be provided:
 - Class notes
 - Alternatives to the recommended text
 - Supplemental reading

- **Teaching Assistant:** TBA

- **Infrastructure**
 - ECE Linux Clusters in the College of computing building
 - Simulation: Modelsim
 - Synthesis: Mentor Graphics Leonardo Spectrum or Synplicity
 - Tutorials will be provided

AMD Au1200 System on Chip

- Embedded processor
- Custom cores
- On-Chip I/O
- On-Chip Buses

Source: AMD
Evaluation

- Midterms: 2, 20% each
 - 24 hour take home examination
- Assignments: 20%
- Final/Project: 40%
 - Group projects will be considered
 - Detailed description of milestones will be provided
 - Schedule, format, and content
 - Presentation during final examination
 - Final oral examination