
 1

XilinxApr1505

[music]

Operator

Hello. I would like to welcome everyone from around the world.

Thank you for joining us today for this webcast on "Design

Techniques for Best Performance, Power and Cost," brought to you

by Xilinx and Tech Online Webcasts. The presenter today is

Niall Battson, Technical Marketing Engineer in the newly formed

DSP Division at Xilinx. This webcast software allows you to sit

back and have the navigation advance automatically. As a user

participating in this webcast, you will be able to ask questions

at any time during this presentation by clicking on the "Ask a

Question" button, and then typing your question in the window

that pops up and clicking, "Submit." Niall will be answering

these questions at the end of the webcast, please feel free to

enter them at any time. Also included in this webcast is a

survey; please take the time to open, fill out and submit the

presentation survey. You can access the survey at any time in

the "Print Documents and Viewings" pulldown menu on the left-

hand side of your interface. This survey will also pop open

when you choose to close your viewer window, or when the view

window closes automatically at the end of this webcast. By

 2

submitting this survey, you will be providing Xilinx and Tech

Online with valuable feedback on the subjects covered in this

webcast, and also how we can improve the webcast product. And

now it give me great pleasure to introduce you to Niall Batson.

Niall Batson

SLIDE 1:

Thank you, ***. Please welcome everybody as *** for this big

session now in the Tech Online series of the Virtex-4 solutions

we have on our power, performance, signal integrity, SSIO, ***

interesting from Doctor Howard Johnson. And today I am going to

talk a lot about DSP specifically and what has happened in

Virtex-4, and with regard to XtremeDSP Slice, to see how it is

going to affect our designs for system engineers or hardware

engineers, in regards to performance, power and cost; and how it

can really help increase performance by terms of *** in making

some and I feel co-processors as a conventional DSP processes.

So, let's slide right in here.

SLIDE 2:

The Vertix-4 DSP advantages. Vertix-4 was announced about nine

months ago back in September *** fast. I have been working in

Vertix-4 for about two years now, looking at designs, looking at

how it is going to impact you as hardware designers in terms of

 3

the techniques that you need to use to get this higher

performance. You'll have twice the performance of a Vertix-2

Pro in Vertix-4. That's really, really great. I mean, that's

fantastic from a hardware engineering perspective because as I

increase performance in my DSP functionality, you start to

shrink the size. That's going to have a big impact on the cost.

Also the power has greatly dropped I've seen by paying a lot

closer attention to power. It's *** particularly low power, but

we've seen this great improvement, especially in Virtex-4 over

Virtex-2 Pro. I have been playing with lots of designs as well.

I've seen a massive reduction in the slice count of my designs

over Virtex-2 Pro as well, especially in all different types of

filters and FFT arrangements. I've seen by exploiting these

advantages currently of Virtex-4, I'm getting at least a 50%

reduction. As I chose some key examples throughout this

session, I try to emphasize that as well. And also, we're a

programmable logic company, so we haven't sacrificed any

flexibility. So, Virtix-4 with its introduction of the

XtremeDSP Slice has yet to do that either. So, there's a lot of

flexibility. But I'll point that out in more detail as I go

through.

SLIDE 3:

As I said, what we are trying to show you today is a look at

 4

Virtex-4 and see the impact of what this XtremeDSP Slice is

going to have on you as hardware engineers; or even in our

system engineers listening to this session, what you should tell

the hardware engineers the kind of performance, power and size

reduction benefits they should be trying to get by exploiting

this element inside Virtex-4 correctly. So, as I said, we'll

look closely at how we enable that 50% benefit, especially in

regard to our competitors, and also increase a much better power

reduction. I also want to have at a couple of examples, a

digital communications example and a video processing case study

at the end, that will take messages up there I am trying -- to

say the advantages, to show that a high level, larger

functionality will get all the benefits still. The user at the

low level of Virtex-4, if he flies correctly, will see much

greater benefits at these large system level functions as well.

SLIDE 4:

So, first of all, I'll start off with the Virtex-4 family, and

I'll look at the XtremeDSP Slice in detail: I'll give you the

history of it, see how its changed and how it is going to impact

us, and especially how it's going to change in respect to filter

techniques. Everyone always looks for the filter techniques to

start with because they're just so rife in DSP systems. So, if

you look at [first opus (?)], you can see how that impact other

 5

functionality as well. And that's how we will go into the

digital up converter example and [2-D surface].

SLIDE 5:

So, starting off with the Virtex-4 family. As I said, about

nine months ago, Giant introduced the Virtix-4 family.

SLIDE 6:

And it did something very different. For the first time ever,

and FPG vendor decided to have three sub-families, Splitting out

that family into smaller sections, the LX, the FX and the SX

family. They all give a slight bias to different kinds of

applications: LX is more logic-centric; FX is more systems-

centric involving processes and MGTs; and on our DSP design, SX

is the one that's most interesting to us. Let's have a look at

that SX part.

SLIDE 7:

As you see, Virtex-4 introduces this AFMBL architecture, which

is *** of all: the fabric, the multipliers, the memory, the IO,

all being in a column-based structure. As XtremeDSP Slices, the

horsepower, the work engines if you will, or DSP, edit a number

of columns of them in the SX family. The smallest SX part gives

me up to 128 XtremeDSP Slices. The largest, 512 XtremeDSP

 6

Slices. And you'll say, "Where do you get 500 megahertz to

process speed grade; that's a lot of DSP computational power."

For advanced algorithm designers out there, this is going to be

very exciting for you. I'm also looking at the fabric count;

it's still got 2,650 CLB *** parts. It's all got all the

functionality to complement the DSP processes, and also any

communication you might need, like the PCI for example.

SLIDE 8:

So, let's kind of have a closer look at that XtremeDSP Slice,

and see the impact it's had and how it's slightly different.

SLIDE 9:

Let me bring up the next slide here. I have a few problems

bringing up the next slide. It's a wait.

-: Yes, I just moved it for you. Go ahead.

I'm not seeing anything.

-: Yes, that's on my slide now, so you should go ***.

OK. Do you see the extreme DSP? It should be multiply in the

register.

-: Now I'm on Slide 9.

***, it's identical.

-: You know what? I've got the audience to Slide 9 --

OK. If you were to Slide 9, you should see the multiply

 7

register. That's the multi-18-by-18 you see in Vertix-2 Pro.

And you can use Vertix-2 Pro. That's exactly what you'll see,

what you have been using in the past. So that was a good

function. We found that we had to sort of bend that

functionality. So the most common thing that peoples often do

was always have input registers in front on the front of the V2

Pro mult-18-by-18. So, they automatically -- it's like *** --

You'll see they added the input registers.

SLIDE 10:

That was something that people used to use fabric, and it poured

that into the Vertix-4 cycle. It was the first step we took.

That's fantastic. That's really good because that will

fortunately start to reduce the fabric count. You should be

able to start to see how the fabric count is starting to

decrease.

SLIDE 11:

On our next FOIL, you'll see there will be added an added two

FSP. Often in Vertix-2 Pro designs, we started to see that the

performance bottleneck was always in the additions, especially

in those large multiply accumulate engines where you have like

40-bit add results. This is very important, to start to move it

into an embedded functionality, to get the performance gains we

 8

wanted to get. And the system designers and big hardware

designers were *** the designs. So we added that, obviously a

[typeline] register at the end. And using [chess gates], you

can see on the input there. That is going to be very important

for the ***, and you'll see how I exploit that as I introduce

examples.

SLIDE 12:

We've now added Slide 12. On the next slide, we can see an

added functionality. Remember, Xilinx is programmable logic

company. We don't make fixed functionality. We need to give

you options as designers. So we added these *** not only to

multiply ***; maybe you multiply and accumulate; or maybe a

multiply and add to a cascade. Cascading is very important in

lots of filter functionality. And I'll show how using that

dedicated captive, you'll see the PCU, the PCF is extremely

important. So we've added that. This introduces a new sort of

idea to you as designers. It's an idea of an Opmode. I have to

make a decision now between multiply add, multiply accumulate to

multiply to scale. And that's decided by what architecture you

use, include an Opmode: the idea of changing Opmode to change

the functionality of an XtremeDSP Slice.

 9

SLIDE 13:

On our next slide, you'll see the XtremeDSP Slice as it is

today. That allotted more Opmode to the added agency. There's

the x-max, the y-max, and the zed-max. That's going to be

extremely important, using that, to get in the kind of

functionality that you might need. There is many different ways

you can use this block. I really want to stress to you, it's

not just a multiply accumulate engine. It's actually, it can be

an accumulated by itself. I could set the Opmode to be a

multiplier or multiply it to scale. Or you can constantly

change that on the fly.

SLIDE 14:

On the next slide -- I really enjoy this one -- you can probably

can't even read it in the audience, but it is trying to stress

the point: They have gone over 40 different modes in the

XtremeDSP Slice. That is a lot of different modes. So please,

don't think of this as just an multiply accumulate engine; it

can do far, far more. And you should be looking at it in detail

to study how you should exploit your algorithms better in the

XtremeDSP Slice. The more it keeps function of the indirect

XtremeDSP Slice, the easier one jump will be as a designer to

get a lower ***, better power performance and also top

performance. This whole block in a *** speed grade under 500

 10

megahertz. That's brilliant. If you keep inside the block, you

store the tight line in that will be provided, you are

guaranteed to get up to 500-megahertz number. And I'll show how

I try my best every time I do a particular application to get as

much of the design as possible in to the XtremeDSP Slice, and

exploit the cascades. Again, over 40 modes, and it is

dynamically operated. A lot of people get a little bit confused

with that dynamic operated: "How can I take advantage of it?"

SLIDE 15:

So, the next FOIL, I call it providing sample, probably most

familiar to most of you, as we're doing examples in DSP the

complex multiplier, the heart and soul of the FSP ***, and adapt

to a complex filter for example. Here I'm not using all four

multiplications that you might do, and it's *** the complex ***,

or maybe three with some addition. But realize as a designer, I

thought, "Hang on a second. My day to eight media 100

megasamples per second or slower. This cannot be the slowest

speed rate. It needs to be slight, and live up to 400

megahertz. That gives me four clock cycles to play with." Use

the idea, it's time to fold down functions into one multiplier

and reuse it many times. So, it's very small slice count.

 11

SLIDE 16:

On the next slide I introduce the first clock cycle. And this

is specific Opmode required to have the B x D in the

multiplication, and also I'm going to be there's no -- I'm just

making sure it is attached, because the B x D must be negative,

and adding a zero to it. The *** subtraction on the output of

the multiplier.

SLIDE 17:

The next cycle is what I do next, at the end of the complex

multiplication. Output to the multipliers then. I can now

change the functionality of it to be an accumulate, and add to

the previous result that I calculated. That gives me my real

results by making sure the control logic *** and also sets the

correct captures, and enables for me to capture the real result.

SLIDE 18:

Next I'm going to work on the imagining as a change in Opmode

again on the third clock cycle, Slide 18. That's great because

there's a change in Opmode dynamically, you think, on every

clock cycle of that Opmode.

SLIDE 19:

And again in the next FOIL, I *** the fourth clock cycle, we're

 12

back to a multiply accumulate engine again. And this is

functionality, exploiting clock cycles to reduce the size of our

resources for a particular function. Reducing the function size

drops the power and also drops the resources. That's really,

really good, and ultimately cost. Using really good techniques

that I often don't see hardware designers exploiting. So again,

the size is very small. But all that control logic is being

used to directly change the Opmode of a DC48 slice. So, how do

I generate that control of it? That's a question I also get

from a lot of people. And it's really very, very simple. I've

seen some customers who specifically do a lot of state machines,

and add its statements, and all kinds of more complex state

machines to try and do this. I find it much more simpler if we

just do a small medley, taking this to require seven bits, and

then a counter on the input. That's a really good way of doing

it and it only uses five logic slices. But I can guarantee

you'll get more performance if I do that. That's a really,

really good technique to use, to do these kinds of dynamic

Opmode changes. Just a little memory, this distributed memory

that we have in logic fabric, and then a counter, each account:

one, two, three, four. And then you can just repeat that by

using an MA equals to switch it on and off. And here, I'm using

four cycles to reduce the size of the function. That's very

important; again, reduction in size. And also, it is great to

 13

use the dynamic Opmode to your advantage.

SLIDE 20:

In the next slide, we'll see the XtremeDSP Slice Cascade in full

force. Remember as I said earlier, the Virtex family has the

XtremeDSP Slices at four *** -- It's four families actually,

having them in columns. So those XtremeDSP Slices, they stay on

top of each other, and the cascades work their way up the

column. So you must exploit the columns to get a lot of the

benefits. Think about that carefully. It's very important. I

really try to stress that as I look at some of the filter

examples I did. There are a few key points to mention here.

Few XtremeDSP make one XtremeDSP Tile. Now the tile shares a C

input. They show on the FOIL there. It's the only that is

registered there. So you can only use one C input for two

XtremeDSP Slices. So bear that in mind. Don't try and use the

inputs for all the XtremeDSP Slices. And this is where

cascading will come in very handy. So you can use one c input

for a particular input, and then you start to use the cascades

so we free up C inputs. Bear that in mind.

SLIDE 21:

On our next FOIL, we have got to talk a little bit about power

as well. Power in Virtex-4 is getting a lot lot better. Do you

 14

see anything about multiplying indirect engines; the yield out

there is very *** multiplying indirect engines as consuming as

little power as possible; especially if I'm starting to push the

clock frequencies up. Power is always related to frequency. If

I push up the clock frequency, up flies my power. In Virtex-4,

remember, I'm stressing I can get twice the performance I can

get in Virtex-2 Pro. So I hope I have improved the power, well,

we have in Virtex-4 fortunately. We've gone down to about the

12 for a given multiply-accumulate function. It's about 2.3

milliwatts per 100 megahertz for leading ***. There's a lot of

data on the internet at the moment regarding our power numbers.

But that's just one little function, isn't it?

SLIDE 22:

On our next slide, you'll start to see how I have started to

exploit -- I will do Estimate Stop. Estimate is actual power

*** on actual much larger functions. The first slide you can

see a 63 Tap FIR Filter. This is a good example. It uses the

cascade as I said to implement a fully parallel FIR filter in

the *** chain. We also went ahead and did it in the science

parts so we could compare the power difference between our smart

competitors. We see a significant reduction in power because we

are using the cascade columns of these DSP48s. In fact, we use

particular filter architectures to really take advantage of

 15

that, so we don't go out into the fabric to consume too much

power to the same functionality. We're seeing a 57% reduction

in power, much greater than one watt a difference. System

engineers are always keen to reduce the power consumption of

these parts. And so that has been an extremely important to

note. Always push your hardware engineers to get used to

columns and take advantage of them without using up extra

fabric, so you can get the power down.

SLIDE 23:

In the next FOIL, we look at a slightly different function, a

1024 Point FFT. For this example, I used 16-bit data, very

commonly used, and 16-bit twiddle functions for the coefficients

is what I began as FFT. Again, it's streaming data, high

performance. I'm still seeing a big reduction in power in

designing ***, again in that *** territory. The difference in

dynamic power won't seem so traumatic, only 7%, mainly because

we're dominated in this particular application by the logic

fabric. Look at the logic fabric resources in both *** and

acknowledge or see that we see that it must be the same. We've

got a more efficient solution and it's certainly going to effect

the power. But most of the power consumption is coming from the

fabric. So that tells me that how to design it. If I can start

to use more DSP Slices and less fabric in my algorithm in

 16

general, ***, I can start to really get on top of the direct

power and start to bring it down, taking advantage of it down.

That is going to be very important when you start doing about

this. Look to exploit the DSP48 slice as much as possible.

That makes the SX family very, very appealing because its ratio

of multiply *** DSP slices the fabric is the most biased towards

the DSP48 slice; so, you've got the best shot to getting that

power down. The *** when you're looking at families as well.

SLIDE 24:

Now, let's have a look at some filter techniques.

SLIDE 25:

Next slide. This is getting very important. I think it is what

is most important to you. Look at how this low level, how this

DSP Slice has changed. Now let's look at how it has impacted

algorithms and what difference it is making.

SLIDE 26:

It's not filter algorithm on the next slide. This is the

family, what I'm sure you've all seen at school many times. And

you might have seen a picture like this in your textbooks. You

might even carry it on the desk next to you. *** typical sum of

products with a *** summation tree at the end. Now, the

 17

question we need to ask though is, "How do we implement this

function?" This is just a sort of a signal flow graph we are

looking at here. How does verdict score change my

implementations, and how would I have to consider building this

function based on [e-gravitors] for FIR filters?

SLIDE 27:

In the next FOIL you see, dual-axis sampling a number of

coefficients. It is very important to understand because these

two key factors in how I am going to start building my first

filters. I've built this FOIL an envelope. Let's just say for

example I try my hand, I can only use one multiplier to do one

MAC FIR filter. That's all I'm allowed for example. That's the

envelope I'm looking at, OK? This is a particular *** of

filters. I call them sequential FIR filters. They tend to do

things of a number of cycles. You can see there is a

performance envelope. There is a point where I can support only

so many cycles or so many coefficients for a given sample rate.

What is interesting though, is in Virtex-4, this envelope has

risen due to the potential increased clock speed of the DSP48.

Now, I've only 400 megahertz, I can support more coefficients.

So, I would expect in general, the applications that haven't

increased in sample rate, they will be looking to do these more

sequential type FIR filters. So, bear that in mind when you're

 18

looking at Virtex-4. I expect to see these to be more

prevalent. Let's have a look at specific implementation now,

and in the Virtex-4 MAC FIR filter. In our next FOIL, I've

highlighted a filter structure to show you how it could be

built. Immediately, you start to see the DSP Slice thing takes

advantage of, and how it's going to help me over Virtex-2 Pro.

Remember, the *** had to be done in Virtex-2 Pro. Now, it's all

embedded in the XtremeDSP Slice. I specified lot mode on the

FOIL. You can see the one I used. By dynamically changing the

Opmode as well, just one bit of it, so they multiply accumulate

every so many cycles -- every 366 in this example -- will reset

to another result that these three calculates. I'm creating

over 50 slices versus Vertix-2 Pro, by using the XtremeDSP

Slice. That's very important. That's going to help reduce my

power, reduce my resources, and also any cost as well. Here's

the dual-port block memory in dual=port mode, very handy, and a

control logic, sitting from the ***. That's going to be

expressing the coefficients, and also using a cyclical round

buffer in the top part of the memory. Size: down there, very

small, very compact. And I can easily achieve the kind of

frequencies that I expect. All my analysis here I've been doing

is on the slow speed grade. With the marketing numbers you get

exposed to, always pursue the high-speed grades. I find, when I

work with customers in general, they usually use the slow speed

 19

grade ***. *** probably more realistic geo-environment. ***

input my *** I have done, and I tried to design the same filter

in Stratix-II.

SLIDE 28:

So, for the next slide you see the Stratix-II implementation.

Now, immediately we can start to make some opinion statements on

the DSP plot in *** that starts *** slice designs. Now, what's

different in that mode? And that means unfortunately, I lose

two of the multipliers in *** mode. That is got to be worrying

for hardware system designers. Half my potential multipliers if

I were to use the whole path ***. That might not be possible.

But for a given max unit, it costs me two of the multipliers.

That's got to be worried. Sort of hurt. You lose a potential

piece, *** engines. And that also forces me to use a second

multiplier as a MAC engine as well. It's not possible to do

them differently. *** I have to use a few of them here to store

my data and coefficients. And I have a register on the output.

Again, performance starts to drop rapidly. I'm using an *** FIR

Compiler here, the latest version off the web, to get these data

points as well. Again, Virtex is much, much smarter here, by

pushing the envelope; because we're using ideas we've got and it

gives a nice coagularity of the single element, which is very

good for c sequential FIR filters. I believe the critical part

 20

was actually in the memory section -- hang on -- in the Stratix-

II.

SLIDE 29:

Next foil. Let's have a look at the super-fast situation,

that's *** collection. Extremely high data rates coming into

you system and there need to be extremely high performance

filters. I call these parallel FIR filters, OK? They have

their own sort of performance finality lines as well. Over

about 225 or 200 or 250, depending on where you are trying to

shoot for, for your actual frequency in your parts, you see that

the line comes into play. Now I have less than two cycles

available to me. If I have got two cycles, I can start to fold

the filter and use less multipliers to do more coefficients.

Here, it's one coefficient per multiplier you're using, OK?

This is a high performance environment. Let's have a look at it

has been impacted in Virtex-4, using XtremeDSP Slice.

SLIDE 30:

Here we're looking at -- on our next slide -- this is Systolic

FIR filter architecture. We call it a sys-con, but really I

guess its most technical name for the mathematicians in the

audience would be direct form tray one with one extra stage of

pipelining. That's what *** thinks, and this is a good term

 21

that we have been using here *** to describe this structure.

It's very, very novice for the XtremeDSP Slice and Vertix-IV

because it uses the columns, you see. Use the cascade between

XtremeDSP Slice. The non-*** performance, and it's using added

chains. That is going to be critical to analyzing Virtex-4, an

in your algorithm implementations that you do. Added chains

must start to become part of your design algorithms. If you to

exploit the exchanges being sliced properly, we can get the

benefit that we're talking about: the twice the performance, the

lower power. Here in this example, I used 23 *** metric. I

used 23 exchanges XDSP slices. That's extremely good. No

fabric is being used. Hence, the power story that we have got

earlier, just to take an example. That's really good. Added

chains are what is enabling us here. We use algorithms to

exploit added chain. Again, also look at the two registers to

each XtremeDSP Slice. That is very useful because it helps me

match up the point values again to the added chain. They were

put inside the slice on purpose for this kind of structure.

SLIDE 31:

Have a look at the Stratix-II implementation. Now, we'll deal

with a slightly different approach for their DSP solution. They

have given through this adder tree structure. The *** things

change are the key to getting the performance advantages that

 22

you would want for tomorrow and today's DSP applications. They

have gone with a tree. And there really are significant

problems in doing the tree. It may be that it's *** simple, but

it starts to hurt us in our performance. As you can see, the

DSP block is very nicely used up there for multipliers and the

added tree there with three others. That's great. It gives me

a single result. I still have to combine the results in each

DSP block. Now, this has been a very nice thing. It starts at

two. I've *** one. They have introduced the tree for adder.

And that makes this tree smaller. That's good, there's

definitely a nice connection. But still, you can't avoid using

fabric adders for this particular example. In fact, any of

these parallel structures ***, apart from the four-path one,

which might never *** parallel, you have to go into the fabric

and start combining results there. Now fabric has its problems

because it seems to be slow for large adder change. And

unfortunately, the adders are the output of these *** are always

the largest, especially the large one; it must be up in the 40

bit territory for these examples. And this is what leads to

performance drop-off. Now, you can't pipeline those added

chains. And it starts to push the performance up. But that's

not the thing. It impacts our resource usage. It impacts our

power. And that's not good either. Do you see any way out of

this? Using adder trees seems to be very detrimental. At a

 23

chain approach, you start to get at the advantages that we would

like. This leaves a situation: what do we do in the in-between?

Most of you, I imagine, will be looking at the semi-parallels.

For the next FOIL, I start to fill in the gaps between the

parallel and the sequential.

SLIDE 32:

These are the grey areas, when I have four multipliers or eight

multipliers. It all depends on the kind of speed that your

input data rate is coming at. But we are going to push the

clock speed up the performance that we have given you. So I --

You know, we are giving you a Ferrari here. Let's use it. And

drive it fast. So, let's have a look at the implementation of

the Virtex-4 multipliers. So, the four multiplier is *** semi-

parallel filter. I'm using HDTV sample rates here. What you

have got is free high-performance application. It still affords

me a number of clock cycles that is my *** in terms of my 400

megahertz, so it is low speed rates.

SLIDE 33:

Now, here I'd have taken 16 pacts and I folded it by four. So I

have taken 16 coefficients, by mapping them down to a 4

multiplier, and the filter gets muted. NED, accumulate your

need; that is going to be very important for accumulating the

 24

four results over the four cycles. Look how I have exploited

adder chains again here. It's very important. A very good

example of the adder chains. Even using the cascade to go with

the accumulator at the end. The input data, again we are taking

advantage of some of the great features of Virtex-4. The

SOL16s, I use them for the memory buffers and the data. They

are very useful, the SOL16s. My good friend Jim Chapman in the

UK always talks about the advantages of SOL16. You can find a

lot of work on our design support site under the Tech

Exclusives. Take a look. He's got lots of SOL16s and their

advantages. And they're very good here. They take very well in

this structure. In fact, a lot of these semi-parallel

structures take advantage of a small distributive SOL16

memories; because you have got a number of multipliers, and you

are dividing your coefficients by the number of multipliers. So

your sort of taps have multipliers. And then they start to get

smaller. The faster your project goes, the smaller the memories

I need are. We saw un the sequential world that we have used

larger memories because they are running out of more cycles. As

you push the performance up, their memories get smaller and

smaller. We need more memory bandwidth. So *** is very good

store a lot of memory bandwidth because you have these tiny

little memories that can be quite big or small, but they play,

the example here, 4 by 18, 18 bits, four ***. ***. Very small

 25

little memory, we use the slices for that. It looks like we

have got good performance again by staying inside the XtremeDSP

Slice column as much as possible, using a little bit of fabric

to help store my memory coefficients and my data, a little bit

of control logic as well.

SLIDE 34:

So, just to prove my point, I went ahead and built it in our

software. In the next FOIL you can see an implementation system

generator. That's a high level ***. You can find a lot of

information out on the web, even *** demand by doctor ***

generate a group. He talks about that on our website as well.

*** system generator. I just wanted to point out Virtex-4 and

***, and you can build these kinds of functions. This *** is

available on the user guide section, the *** on the web for

Virtex-4. And you can see how using *** architectures here, the

two *** blocks together. You can see its direct implementation

looking very similar to my foil on the screen. That's really

good. And what's even better is it can grow and shrink on a

number of multipliers very easily. Because if you look at the

structures they're very *** they're very similar, unlike trees.

Trees -- they grow and they get smaller and bigger, and *** on

the end aren't as very extendable. Very very nice, the *** very

advantageous. If the algorithms start to exploit them. So you

 26

should look to do that.

SLIDE 35:

Next, we'll look at the next foil, at the Stratix 4 multiplier

systolic standing parallel FIRs. Have a look at this. This is

very nice. The 16 coefficients map very nicely to four mults,

which maps very nicely to the DSP block. Again it's good

because Altera likes numbers that divide very well by 4. We

have single-bit granularities and we don't worry too much about

that. 3, 5, 6 is fine. But 4 is what Altera likes. So you can

use all of the mults *** most efficient. But there's still a

big problem *** fabric again *** finish my result. The

accumulator has to go out into fabric. I guess I could use a

DSP block only to do an accumulator. But then I'm committing a

whole another DSP block to do the accumulate function. That

doesn't seem like a very wise use of it. I would use the fabric

*** cost me too much, but it's going to hurt my performance

again. That's why we're seeing the significant drop-off in

Altera's performance in these kind of functions. You can't

avoid going into fabric. I have to accumulate over 4 cycles.

*** memory *** very nicely here either. The M512s are good.

They use the smaller ones. But they're just not small enough

*** make up for granularity that the *** 16 so lovely to offer.

So the *** 16 *** embedded shifting capability that you would

 27

want in *** M512 they create a little cyclical RAM buffer, very

much like *** does with their *** to do the shifting capability

in the data core. Again big drop-off on performance. Much more

resources. Needs more power as well. All this not looking too

good *** Altera. And Xilinx again where you can get sufficient

functions, high performance upwards of 400 MHz *** 400 MHz be

great. Both of those numbers. It'll help you reduce the size.

And remember, the whole design doesn't have to work at 400 MHz.

A number of customers often come to me and say well how's the

whole chip going to work at 400 MHz? It's not possible. Can't

use fabric. It doesn't go that fast. Right, well it doesn't

have to. Again in the HDTV example, that semi-parallel filter,

you're using 75 MHz *** so the input is quite slow, quite

doable, and then they ramp up inside the filter so the internals

of that little filter *** before they drop off at the end to

take the slow outputs. So what we've got is little islands of

400 MHz going to reduce the size of these functions. So you

should look to do that *** interface might be going slower or

some *** work layer or other functionality that might be going

slower. But the key in these filter structures, anything that

uses the XtremeDSP Slice, it's got to push up to the performance

that it was meant to be used at.

 28

SLIDE 36:

Right. We looked at three key examples here. And they're

really good for emphasizing the differences between the two

architectures, between Stratix-II and Xilinx. And look at the

advantage of Xilinx. But let's look at something that may be

more realistic to you hardware designers in the audience

especially in the digital communications environment. Looking

at the multi-channel multi-rate FIR filters here.

SLIDE 37:

Let's have a look at the Xilinx implementation. We'll break

down *** next slide, 37. Here I've got interpolate by 2, 8

channels. I'm using the UMTS 3.84 megasamples which I can ***

three particular options here. Because depending on the speed

rate you're going to be shooting for. And I've also totaled up

the total number of coefficients that are being required to

process it. That's always good to get in mind. Don't think the

channels have to be independent. One structure can easily do --

handle multiple channels *** multisection *** see here. You can

see the total number of coefficients, over 1500 there. I looked

at that and I thought OK 1500 coefficients, let's see if I go to

that lower frequency clock how many multipliers would I require.

16 sequential engines there *** have to require, that'd be 16

DSP48s. How about Option 3? The bottom? That's around 430

 29

MHz. It's putting the number of DSP48s down again by pushing

the clock frequency and reducing the number of resources I have

*** big desire then for us as designers, push that clock

frequency up *** three different options *** depending on the

speed grade I'm targeting. I went to the Option 3. That's the

middle speed grade. I've shown the implementation on the next

foil here.

SLIDE 38:

As you can see, on the front end I've got the TDM data. That's

the time division multiplex data on the front. That's a bit

much. People might say oh how do you get that big *** to work

at 400? Well, the answer is it doesn't have to. It's 3.84 MHz,

goes up to 15 by timesing it by 8 *** multiplexing. It's much

much less than 400. 3 times 8 we're looking at roughly 24 MHz

required there. Very slow, very easy to get the *** speeds.

And it's the engine in the middle that starts to go up in

performance results, ramping up to those high performance

numbers of 400 MHz. *** close to the 450 number here *** you

can see I've exploited *** again. In fact this is very much

like the semipowered up structure we've been looking at earlier.

Except we're using block memory to store our data instead of the

smaller distributed memory. There's more demand here for that.

Because the sample rate was slower, was in that 3.84 MHz

 30

territory *** architectures to the slower data rates. Really

good efficiency here. We need a funnel accumulator at the end

again just like we saw earlier. The cascaded *** very well here

to keep our performance up *** output all my 8 channels to a

slower rate. I've totted up the slice *** for you. They're the

ones in orange and you can see the performance there ***

performance. That's what I like to see. That's great ***

hardware designer. Then I put my Altera hat on again, said how

would I do in Altera *** exploit their architecture the best.

SLIDE 39:

So the next foil you can see how I approached it from Stratix-

II. *** using their filter compiler but *** approaching the

problem. Oh, I've got 3 input adders again. That's really

advantageous. That does help us in reducing the size of that

adder tree. But there's still *** tree, which we've already

discussed earlier, is a problem. I do like that ***

accumulator. That's quite nice. And then the output trilogy

nice down the bottom as well *** still got the same problem.

I've got to go into fabric to complete my results. So because I

went into fabric I shouldn't start thinking about slower clock

frequencies *** they're blocking the highest speed rate was 450

MHz I believe is coming soon. And it's kind of irrespective if

the fabric can't keep up. So I went for 295 MHz *** that

 31

requires 20 multipliers. Automatically you need to ***

significant number more multipliers to solve the same problem.

Because their top frequencies are come down. More multipliers,

more power, that's not good, and so that's not so good, and then

lower performance as well. Also not so useful.

SLIDE 40:

Next foil *** bit closer at the DSP48 *** I put the performance

numbers up I've got there. Significantly larger than Xilinx ***

and the performance, as much as I tried, I couldn't get the 295

I wanted. Even by pipelining the adder chains, which is in the

fabric, you can pipeline adder chains by breaking them, it cost

me a wee bit more resources, as we're seeing here, and also it

should boost my performance up, it still didn't give me that 295

I needed. It's not good. So I'd actually have to go back and

have more multipliers than 20. At least 22 or 23 maybe *** so

the moral of the story is if you use the XtremeDSP Slice

correctly you can really start seeing major benefits for you as

hardware designers and it keeps the system designers very happy

as well. Because they like *** power going down as well as the

cost.

SLIDE 41:

To wrap up the whole session, we'll start to look at some

 32

digital up converters and down converters *** sorry and also a

video *** this foil you'll see the digital up converter. The

classic environment very similar to a gray chip *** the PFIRs,

the compensation FIR, the CIC and the *** combining with the ***

there. Now you see the CIC. That's always a very good one in

the DSP48. I don't have time to go into it but bear in mind

it's just a set of accumulators. You can use the XtremeDSP

Slice as just an accumulator. So that's what we did.

SLIDE 42:

On the next slide you can see the system generator

implementation I used *** we exploited all the techniques in

this design I used earlier in this presentation. So please feel

free to go back and look at this later to look at the different

how I would have done each one. Again, CIC uses accumulators.

So I can use that in a DSP48. I did it in V-II Pro and I also

did it in Virtex-4.

SLIDE 43:

On the next slide you can see the resource and the performance.

Again we're *** from a Virtex-II Pro and a greater than 50%

reduction on the fabric because using the XtremeDSP48 to my

advantage, I use that properly, using cascades and taking

advantage of its performance gains I can really see big

 33

reductions *** lower power, better cost.

SLIDE 44:

Final case study before we finish is the 2-D FIR filters. Again

I put the maths up for the mathematicians in the audience. So

you'd like to see it. This is a separable 2-D FIR. It is high-

performance *** HDTV broadcasting would be where this would be

most suitable. 24 taps, re-loadable coefficients.

SLIDE 45:

On the next foil you can see the *** being used. Very nice,

it's got *** adder chains again coming to my rescue. Very good

*** our algorithms and then the accumulator on the end *** big

line buffers *** the lines here and then using a number of block

RAMs. I've put the resource at the bottom. Also the equation

down there shows you how I figured out *** number of multipliers

that I wanted to use. Re-loadable coefficients you can see the

distributed memories used there to store them. Each one *** 4

coefficients *** and then the other *** dual port distributed

memories to load in the new coefficients as well *** switch over

whenever we want to. Video customers often look to reload

coefficients quite frequently. So this is a good example for

that.

 34

SLIDE 46:

Resources numbers on the next slide. You can see here V-II Pro

versus Virtex-4. but the performance again, pushing the twice

the performance and also half the size. Again it's very very

useful if *** rearchitect my algorithms *** implementations,

look for opportunities in my projects to try and do that so I

can get the big benefits. Looking to cost-reduce, moving to

Virtex-4, think about your algorithms. Think how adder chains

can be exploited and how we can get those benefits. If I don't

use them I can't get those benefits. And that's not so useful

to us.

SLIDE 47:

So that leads me into my conclusion. The key points to

remember. If you forget everything else just remember these

three key, key points. OK. Very important that you push the

clock frequencies up. Those are the kind of speeds that you

want. You should expect to get these high performance numbers,

500 MHz, in the fastest speed grade, 400 in the lowest. If

you're getting 110 something must be going wrong. Especially on

those smaller FIR filter functions. OK so you must be able to

push that up. So you'd expect that. If you're not getting that

and you're the system designer, you should push your hardware

engineers to do that. Or as a hardware engineer, you should be

 35

expecting that. So push the performance up. That leads to

reduced cost and reduced size and reduced power. All of that is

excellent because the higher the performance the smaller the

functions become. Also make sure you use all the DSP48.

They're good on the power front, so let's use those. Don't use

*** 28 or something. Make sure you exploit them. There's 40 op

modes. Lots of them. Over 40 in fact. So you can use it in

many different ways. You can also do vowel shifters and a

number of other different functions. So even if you have them

left over look for other functions to pull in. There's a lot

more information on the web on this as well. And finally, think

adder chains. Think adder chains. Not the adder tree. The

adder tree has got its problems. DSP of tomorrow *** start to

look toward adder chains because they have a lot of advantages.

That's what *** some of these, especially it's evident here in

Virtex-4 *** very important as well. Because there's a lot of

detail *** detail and I don't expect you to remember it all. So

it's important that you know where to find it.

SLIDE 48:

You can see there's 3 different app notes, 5 different app notes

on the web. There's also a lot of other information your FAEs

have on this. Please go to xilinx.com/dsp and go to the

documentation and find those 3 app notes. And have a look

 36

through them. Read up in detail about those semi-parallel,

parallel and MACC *** structures. And they also have in the

file *** education classes that can help you about this too.

Learning how to use FPGA correctly for your algorithms is going

to be very beneficial from a power, performance and cost

perspective.

SLIDE 49:

So I think that brings me to a closing, the key points I'd like

to say. I think David has something to say before we go into

the question time about the feedback form. So I'll *** answer a

few questions.

DAVID

Thank you, Niall, for that presentation. At this time we move

into question and answer section of the presentation. If you

have a question for Niall, please enter it now by clicking on

the Ask a Question button and then typing your question in the

popup window and clicking Submit. Also please take the time to

open, fill out and submit the presentation survey. You can

access the survey at this time in the Print Documents and View

Links pull-down menu on the left-hand side of your interface.

This survey will also pop open when you choose to close your

viewer window or when the viewer window closes automatically at

 37

the end of this webcast. Now let's go back to Niall for the

Q&A.

NIALL BATSON

*** questions coming in here. There's a general question here,

why does your context multiplier *** only work *** Virtex-4 DSP

*** 500? Excellent question. Very good point. Most of the

time, the marketing messages that you'll be hearing from our

company push that faster speed rate. Also our competitor, also

push the fastest numbers. But I think in most of the real world

examples *** with customers, we tend to go for the slower speed

grades. More *** they're usually cheaper. So *** provide an

example that was using the lower speed grade. So it only went

to 400. If I were to use the high speed grade, I could easily

get 500 in that one multiplier complex *** example. So it's

important to note again 400 is the glass ceiling we should be

pushing towards *** DSP functionality in Virtex-4 in the low

speed grades. Easy enough because *** 500 in the high speed

grades, but I imagine most of you will be using the low speed

grade.

Next question. Little question here, my understanding is that I

can implement 4 multiplier *** Stratix-II *** why is that?

Excellent point *** 4 multipliers and an adder tree in the

 38

Altera block. And if I switch to multiply accumulate mode I

lose two of the adders. So I could still do two multiply

accumulates. Now it gives me another option. I could not use a

multiply accumulate mode and just use it in multiply mode with

their input and output registers and do the accumulator in

fabric. That way I wouldn't waste any multipliers. That's a

good option *** back to the story of in the fabric. There's

enough fabric resources, performance will probably drop,

reaching the *** number for the DSP block performance *** faster

speed grade or adding slower speed grade to down in the 300s.

It's going to be much much harder with that fabric *** so we've

got a problem *** using up more resources, other problems there.

And Xilinx, we can just stick to one *** and we can stay inside.

That's another option and it can be done to not waste

multipliers. But I'm now wasting the three adders. So whatever

comes or goes I'm going to be wasting silicon. That's never

good. Especially from a system designer's perspective.

Another question here. Why is the power difference between

Xilinx and Altera less in the 1024 type *** example compared to

the FIR filter? It's a very fine question, that, it's quite

interesting. As we saw in the FFT example, it was dominated

much more by fabric resources versus the multipliers. Again in

our example I think we were using up about 16 DSP48s versus 2500

 39

Slices. So most of the power is being consumed by the fabric.

And if you go to the other TechOnLines we've had especially ***

or go to the web, you'll see that *** have about equivalent

power savings or power consumption in the fabric. So *** use

the benefits of the DSP48, advantages you have, but it's still

better *** and with a static *** system designer I'm certainly

looking for the lower power solution. And if I can look to

exploit the ***. It also leads me to another point about

ratios. If you look at the ratios of the parts, the affect is

very attractive *** DSP in terms of horsepower and also in terms

of *** numbers of these DSP Slices to logic fabric. If you've

got a *** DSP Slices and we can use them all up, we've got less

fabric, so the *** than the part that's got a lower ratio. Like

Stratix, for example. Stratix-II. It's an excellent question.

Another question here. What tools can I use to take advantage

of the DSP solution today and can I *** C codes for programmable

DSPs? It's a good question. I get that a lot and *** number of

different solutions *** C code question, it's a hotly discussed

topic, this is. Always every conference I go to it's always

discussed, the next high level *** and there's a lot of interest

in developing tools *** C code perspective *** I've yet to see

really the winning solution on the C code to programmable DSP

*** system generator and is a high level modeling tool. A

 40

really good visual dataflow environment *** can take full

advantage of this Virtex-4 architecture in there and *** all my

examples *** generator and those reference designs available on

the web. But from a C code perspective I think the jury's still

out. There are a number of solutions available in the

marketplace. And I encourage you to go and investigate those

*** as well but the question is which gives the performance you

need. System designers, hardware designers, you're all looking

to keep the costs down. And also make time to market

improvements *** power hits and cost hits. So want to keep

performance up. So that's critical. So when you look at these

tools, I'd highly recommend you look at the efficiency of them

and *** make sure you're looking at the efficiency so you can

get the advantages. It's 400 MHz numbers we should be pushing

towards.

OK I think that's all we have time for. For the questions and

answer. I thank you all for coming today. It's been lovely to

talk to you. I hope this has been very beneficial *** start to

look towards taking advantage of the Virtex-4 architecture.

Especially that DSP48. OK. So back to you Dave.

DAVID

Great. I'd also like to thank everyone for attending today's

 41

presentation of Design Techniques for Best Performance, Power

and Cost, brought to you today by Xilinx and TechOnLine Webcast.

I would like to remind you to please fill out and submit your

surveys. Your survey will open when you choose to close your

viewer window or when the viewer window closes automatically at

the end of this webcast. By submitting the survey, you'll be

providing Xilinx and TechOnLine with valuable feedback on the

subjects covered in this webcast and also how we can improve the

webcast product. This presentation will be available to all

registered users in an on-demand format. You'll receive an

email with information on how you can access this on-demand

version of the webcast. Thank you again for attending. We hope

to have you join us for future online webcasts. For a current

schedule of live and on-demand events please go to

www.techonline.com for a complete listing. Thank you and have a

good day.

End of XilinxApr1505

