
Virtex-4 Source-Synchronous Interface Advantage Webcast Transcript

1 1

High-Performance Source-Synchronous Interfaces Made Easy

Webcast Date March 29, 2005

Presented by:
Sean Koontz, Applications Engineering Manager

Peter Alfke, Director, Applications Engineering

Slide 1:
Hello. I would like to welcome everyone from around the world.
Thank you for joining us today for this webcast on "High
Performance Source-Synchronous Interfaces Made Easy," brought to
you by Xilinx and TechOnLine webcasts. Your presenters today
are: Peter [Alfie], Director of Applications Engineering for
Xilinx; and Sean [Koontz], Applications Engineering Manager for
Xilinx. This webcast ultimately allows you to sit back and have
the navigation ***. As the user participating in the webcasts,
you will able to ask questions at any time during the
presentation, by clicking on the "Ask a Question" button, typing
a question in the top of the window, and clicking, "Submit."
The presenters will be answering questions at the end of the
webcast, but please ask answer them at any time. Also included
with this webcast is a survey. Please take the time to open,
fill out and submit the presentation survey. You can access the
survey at any time in the "Print Documents" in the "Viewings"
pull down menu on the left-hand side of your interface. This
survey will also path open when you choose to close your viewer
window, or when the viewer window closes automatically at the
end of the webcast. By submitting this survey, you will be
provided Xilinx and TechOnLine with valuable feedback on the
subjects covered in the webcast, and also how we can improve the
webcast product. And now it gives me great pleasure to
introduce you to Peter Alfie.

PETER ALFIE:
Slide 2:
Hi. Good afternoon, ladies and gentlemen. Good evening in
Europe and good early morning in Asia. This is the first of our
webcasts. We covered performance, signal integrity, hour
construction, and then the interface, as before. Today we will
address source synchronous I/O.

Slides 3+4:

Virtex-4 Source-Synchronous Interface Advantage Webcast Transcript

2 2

First, I will give some background. Then Sean Koontz will give
an overview of the timing problems and their solutions ***. And
he will follow this with detailed applications examples. This
is again an engineering presentation with few, if any, retro ***
research and stratics *** during that era. We really do not
like their mudslinging marketing presentations. And we know
that green *** engineers don't believe that kind of nonsense
either. There are plenty of interesting verdicts or features to
talk about in a positive way. Why source synchronous I/O?
What's wrong with go *** system synchronous I/O? One central
clock observes the whole board. Well, we are caught in a
conflict between two giants.

Slide 5:
Gordon Moore [Ritache] postulated Moore's Law: the doubling of
*** account every other year. As a side effect, system speed is
doubling every five years, and it has done that vehemently. 40
years ago, we were struggling with one megahertz clocking. It's
first hard to be the ***, ***. 40 years and eight doublings
later, we are now at 250 megahertz bus copying, heading towards
500 megahertz, and one gigahertz every two years. It's really
great, ever-increasing performance. But then there is Albert
Einstein, who incidentally exactly how many years ago,
postulated that the propagation of speed of electric signals
can never be increased beyond the speed of light. In fact, the
velocity on a PC board is only running half the speed of light,
and therefore it is constant. That was no problem at one
megahertz. We assume and allocate 25% of the clock area for the
Interconnect Delay, and the rest for the BIOS delay, set-up
times and margins. We, in those day, had 30 meters, 100 feet,
available for the wiring. We put around wires all over the
office or the home. Circuits were slow but interconnect was no
problem at all. 35 years later -- that's five years ago -- at,
let's say, 100 megahertz, we still put it for 30 centimeters, or
12 inches, of *** from the PC board. But today, at *** speed,
we are down to six inches, and we are heading towards three
inches. Obviously, we can not constantly build complex systems
within a three-inch cube.

Slide 6:
Here is a different view of the same problem using circuit time:
Years ago, good old system synchronous designed things that
looped up terminator to drive 50 megahertz through devices, and
each had about 10 nanosecond delay. No problem at all, even
with two nanoseconds of *** delay. At 100 megahertz, and with
five-nanosecond device delays, the timing got a bit tight. It
was even starting using clicks, fly, centralized clocks, global

Virtex-4 Source-Synchronous Interface Advantage Webcast Transcript

3 3

clocks and so on. And at 200 megahertz, this scheme doesn't
work at all. Five nanoseconds not, period. Two nanosecond
clock is solution. Two nanoseconds actually delay, one
nanosecond interconnect delay brings absolutely nothing as in
timing modules. That nice old idea of one common clock driving
multiple clicks simultaneously has become a form literally of
the past, purely extravagant. The only way out of this dilemma
is source synchronous clocking, which means: We set the clock to
*** data. This makes any interconnect delay irrelevant. The
data on the bus arrives whenever it arrives, but it brings
internal clock. This has some drawbacks: there are more clocks
and more clock pins, and there even be multiple clocks, clock
phases and checks. But we have more better made packages with
many connections, and we have chip-internal *** to take care of
that. There is also a detailed filing agent. The clock is
cloven together with data. And the clock edge, therefore,
arrives exactly at the time when it interchanges. And that is
precisely the wrong moment the clock to behave. The good
portion of the day, Sean and I will describe methods. We may
handle the clock or the data, so that the clock hits the center
of the data ***. That's referred to as clock ***.

Slide 7:
Here is ability of source synchronous interfaces. 10 years ago,
the 66-megahertz clocks had achieved a data *** of a few
gigahertz a second. Today, the RapidIO, HyperTransport in SFI-
4, to give us well over 10 gigabytes for second data ***.

Slide 8:
So, synchronous interfaces have become the norm. They are used
for point-to-point traffic, no *** rates or buses. They
increase the chip-to-chip speed with 500-700 megahertz clocks.
And they give better timing monitoring, and that means higher
reliability. Some examples are listed here from the world of
networking and data com, and also memory interfaces.

Slide 9:
Finally, I might also mention that the understood reliable
center of the data is shrinking fast, even faster than the bit
***. Since the transitionings use up a disproportionate part of
the bit period -- another reason we use the available timing
budget very carefully. So, let me conclude: Source synchronous
blocking is not just the better way. It's the only way in
today's and tomorrow's ***. *** Sean Koontz to tell you all the
details.

SEAN [KOONTZ]:

Virtex-4 Source-Synchronous Interface Advantage Webcast Transcript

4 4

Slide 11:
Thanks for the wonderful free amphitheatre. I am going to take
over now with what we, Xilinx and our customers have identified
as some of the major challenges in designing with today's chips,
source synchronous ***.

Slide 12:
I'll start with the first plot diagram of Vertex-4 I/O and some
of the innovations that have been added to this architecture, in
particular to deal with: with clock forwarding schemes as ***,
finally called ChipSync. Every I/O includes these major
features: ISERDES, OSERDES; those are our primitive names for
the serializer and deserializer included in the I/O. The
ISERDES block includes elements to divide the incoming clock
frequency and distribute multiple versions -- or synchronous
versions of clock. Also included are mechanisms for bit and ***
alignment I'll talk about shortly. They also include our clock
distribution networks in this block that he called ChipSync,
it's the complete packaging -- the solution that we tile
throughout the architecture in order to not only implement a
single high speed source synchronous bus, but in order to have
many source synchronous buses.

Slide 13:
The challenge number one: Data Capture at high speeds. This is
fundamentally the most difficult in sequencing aspect of
implementing high speed bus -- not only capturing data, but
doing so and understanding which margins you have left in your
system so that you can proportion a certain amount of error or
slack to your PDP design or to your ASIC *** or whatever device
you're trying to hook up to an FPGA. And obviously when you get
up to a gigabyte per second data, you're electing a very, very
small target to hit, which is what we're showing here.
Objective simply to put that clock right into the middle of that
available data window. So how do we deal with that?

Slide 14:
We manipulate the data or clock or both in order to center that
clock edge in the available data valid window target. Every
Virtex-4 I/O includes what we call IDELAY, under the name or a
variable, have fine resolution, a derailment, which is fully
user accessible. See this 64 tap delay chain with 75 per
seconds resolution. And it is calibrated by a module called
IDELAY control block. The provision or the user requirement is
that a 200 megahertz clock is provided to that, either ***
controlled block. We specify what the quality of that clock it
could be in order to guarantee the 75 pica-second in our data

Virtex-4 Source-Synchronous Interface Advantage Webcast Transcript

5 5

sheet. This allows us to delay data and audit in fine
resolution increments while holding the clock still. This
achieves obviously a fine sampling of a single data var, but
also allows us to manipulate each data channel independently.
So, I'm alluding to some information I'm going to get to later.
But that's a key distinction. Objective number one is sampling
data with the most precision. Objective number two is sampling
the entire bus with the most precision.

Slide 15:
Challenge Number Two: Managing Clock Speeds Up to 700 Megahertz.
This is not only a challenge to the FPGA or an ASIC designer,
but it's a challenge to the PCB designer as well. We identified
this early on with Vertex-2 and implementing high speed for a
particular spot to *** it. You know, what are customers needed
to do? In other words, what kind of clock qualities are being
provided to our chips? What kind of reliability do we need to
understand or limit that either source synchronous clock or
clock source? What this all boils down to is: How do you
distribute ISD *** clock inside its out-rig and maintain the
highest precision duty cycle, and minimize the skew as you
distribute the clock? With Vertex-4, we implemented all of our
global talk networks fully differentially, with differential
drivers and interconnects. This allows for higher speed and
less duty cycle distortion. In addition to the global clock
networks, we also added four fully differential IO clocks per
bank; and I'll elaborate on those and what IO clocks are in a
little bit. Now, the ability to forward clocks is also an
interesting application of our architecture in that distributing
high speed clocks on a board on a system is also challenging,
getting require additional components. The FPGA can serve as a
precision-aligned clock distributor as well, using the IO clock
or the global clock ***.

Slide 16:
So, challenge number three: PCB Layout is becoming more and more
of a challenge as these data rates increase. Obviously, with a
compact board, layout constraints can result in trace length
differences. Or, it can even *** cycle precision scheme
matching in a highly compact board to become almost impossible.
Propagation delays for connectors may also not be available; so
you may not know, or you may have to tolerate a certain amount
of skew that the connector vendor specifies. So these are
unknowns that are attributed to the PCB layout itself.

Slide 17:
So, I mentioned the ability to bit to you skew individual

Virtex-4 Source-Synchronous Interface Advantage Webcast Transcript

6 6

channels using IDELAY, right in the IOB free scaling. So, that
allows you to align or to optimize the viewing quantity of each
data. But if you have to skew in a bus, your words may be
misaligned as well.

Slides 18 + 19:
We have a second block that we call Bitslip in every IOB, which
re-orders the data stream coming into the ISERDES, and allows
you to shift, basically, barrel shift that thing coming through,
and find every possible combination of it -- this assumes a
training pattern -- of the data stream coming into the IOB.
This is also available in every I/O.
So, main objective is to word align. So we use IDELAY to
optimize this re-uplink point for each IOD, and then we use
Bitslip to make sure that the words are aligned as they go into
the fabric.

Slide 20:
Challenge Number Four is implementing multiple interfaces.
Multiple interfaces are going to require multiple unique clock
domains. This makes clock management particularly pivotal and
resource intensive; it requires synthesis, *** distribution
issues. IO Placement for multiple interfaces is also a problem.
You need to break out of the ball grid array, and you need a
floor plan here for your PCB.

Slide 21:
So, I mentioned that the four IO clocks per bank. What is shown
here: each four is on a blue line is a clock region. A bank
consists of two clock regions. So, what's showing here is one
and a half banks. The IO clocks are also paired up with what we
call BUFARS or regional clocks. The regional clock divides down
the incoming clock and then distributes it to the fabric and the
IOs as well. This is how we handle the serial side or the
parallel side of the ASERDES. There are 8 24-clock regions per
device up to four clock-capable *** bank, as I mentioned before.
The regional clock buffer drives fabric. It can be accessed by
fabric. It can accessed by the IO clock as well.

Slide 22:
I've sort of boiled down the amount of clock resources that we
have put into Vertex-4: 32 fully differential global clock
inputs, as well as single-ended clock inputs. That means that
we are not burning up half of our single-ended clocks in order
to implement differential clocks. You get 32 single-ended or
differential. As I mentioned before, 8-24 clock regions for
device, 20 DCMs, 8 PNGDs -- for those of you who don't what the

Virtex-4 Source-Synchronous Interface Advantage Webcast Transcript

7 7

PNGDs are, either phase *** that we got for Vertex-4, which is a
new feature.

Slide 23:
We have also changed, or moved away from our IO ring
methodology. So, with Vertex-4, we have introduced the ***
architecture. This has an understanding for package design in
that it provides a more symmetrical escape pattern, for all of
our IOs. You can see by the way our banks are laid out in the
architecture. This helps us now unskew both in terms of clock
distribution network and in terms of package design. But how
does this translate to assisting the PSB design? It provided
even more flexibility in that you can implement more low skew
source synchronous buses in more different locations, and it
cross-ranks.

Slide 24:
This is just to summarize some of the resources in a different
way. *** 240-960 *** IOs or SelectIO pins and up to 68 clock-
capable I/Os, that’s up to 68 different I/O ***, or 68 different
unique source synchronous buses in all respects.

Slider 25:
Now our better offer is 45 degree steps or ***, and we're
offering 75 picoseconds of resolution. As you increase in
frequency, you can see where the tradeoff becomes quite
significant. It's sort of how much actual valid data you really
have? You have all kinds of results if I count your supply.

Slide 27A:
Let me move into discussing a couple of our applications that
are key showcases for the source synchronous architecture, SFI-4
and SPI-4.2. This is a classic illustration of how our chips
were being used in systems and where the value adequately comes
into play. We have seen that multiple source synchronous buses
and to have VGA is almost a requirement. It is very seldom that
you see somebody *** use just a single *** point.

Slide 27B:
Chip function. What is shown here is a SFI-4 to SPI-4.2 bridge
between a general processor and a OC-192 Framer. We also might
have a SPI-4.2 to Serial for high upgrades in the backend of
this part.

Slide 27C:
A classic example: four-way switches are also critical. So what
is this really getting at? It's getting at the need to be able

Virtex-4 Source-Synchronous Interface Advantage Webcast Transcript

8 8

to implement not only multiple buses, but to be able to move
them freely around and have a lot of free flexibility in order
to get these carts built.

Slide 28:
So, we've simplified the SFI-4 design with a lot of architecture
changes of Virtex-4. We're leveraging ChipSync fully, moved
these higher serialization/deserialization circuitry into the
IOB, as well as the clock distribution. And the FIFO16 is a
block for clock domain change, data handoff between the source
synchronous bus to the core.

Slide 29
So here's a block diagram for the SFI-4 block. A trip to left
side is the user interface: a 64 bit data interface, and the
global clock. We hand that data to a FIFO. We time that;
there's a transmit clock on a -- And then serialize it four-to-
one, and then transmit the 16 bit bus with a forwarded clock
using the output DVR registered to forward it, and you just
change the line to data. And the receiver is the mirror of that
process.

Slide 30:
Blocks used for the receiver: The recovered clock in its network
are implemented on a BUFIO and a BUFR. The BUFIO is the High
Speed Clock distribution network that I talked about earlier,
the serial-side of the receiver. And BUFR is a divide-by-four
version of the input clock, and that clock unit parallel-side of
the deserializer and the fabric. Recovered data is recovered in
the ISERDES. We have a block called ISERDES_ALIGNMENT_PROCESS,
which I'll talk about shortly. This is a clock to data training
algorithm state machine. And then lastly, a FIFO16 that's using
the interface *** core ***.

Slide 31:
So, another block diagram showing the SFI-4 Receiver. Pretty
much everything showing here is implemented in the IO. The
ISERDES connected to Data 0-15. A Clock Capable I/O is used for
the Reship Recover Clock. These are dedicated I/Os. These are
dedicated locations in each bank. The dedication is really the
connectivity to the BUFIO. The BUFIO is located at the end of
every eighth clock row which is a clock region. And it sends
out from there to the BUFR clock network and to the I/O clock
network.

Slide 32:
So, as I mentioned before, we are doing a four-to-one and one-

Virtex-4 Source-Synchronous Interface Advantage Webcast Transcript

9 9

to-four serialization/deserialization process. The *** design
of Virtex-4 has been fair for us up to 700 Megahertz single-data
rate, transmit at this point and receive. We do an automated
version of clock data alignment, which we'll talk about in a
minute. This is what we call bus alignment, and it does not
require a training pattern. This design can also be used for
XSBI and other high-speed single-data-rate LVDS applications.

Slide 33:
So, the ISERDES_ALIGNMENT_PROCESS. This is the bus alignment
that I just mentioned. The objective is to align clock and data
using IDELAY on each data lane. And this is data-agnostic, non-
destructive training technique. The assumptions here are that
clock and data are edge-aligned at the pins of the FPGA, and
that the clock will be toggling at startup for several
milliseconds before data is sent; in other words, that there
will be some period of time that the clock will be switching at
the input of the FPGA. The reason for this is that we are going
to train to that clock. The clock is at now in 1,0 pattern.
When we find the center of the sampling window for the ISERDES
in the clock IOB and we move data to an optimal possible
location based on that clock siting pattern. This fully has
been implemented and fully characterized.

Slide 34:
So here's a circuit diagram of the clock training circuit. Now
this can run all the time. As I mentioned, it's non-
destructive. The clock is routed through the ISERDES in two
different ways: one, it's passed through combinatorially and
then *** the BUFIO and the BUFR. From there, those clocks are
fanned to the data lanes. That is actually is what is
physically recovering data. We also route the clock to the IOA
circuit into the flip-flop in the ISERDES. This is a parallel
path. From there we take a look at the output queue of this
flip-flop in our state machine, and manipulate the delay in
order to interrogate the clock eye.

Slide 35:
So, the best simplification of the algorithm that I could do
here: We begin incrementing the delay on clock until we see a 1
to 0 change at Q output. Then we start counting the number of
taps as we continue to implementing on clock and so we say a 1/0
change in the Q output. Then we start counting the number of
taps as we continue to increment, looking for the next
transition, the next change in state. Once we see that next
change of state, the tap count equals the data valid window
width of the clock at that register. And if you subtract that

Virtex-4 Source-Synchronous Interface Advantage Webcast Transcript

10 10

final tap-delay value by half the number of taps determined to
equal the data valid window width, you will find the absolute
delay required to put the clock in the center of the data eye.
Once you have that number, you increment all data channels by
that amount and the data to clock alignment is complete. As I
mentioned, it can constantly be running. So, if you have a
voltage and temperature shift, you will catch that if it's
greater than 75 pica-seconds, you will catch that by monitoring
the clock count. And you can go ahead and move data once you
have seen that. If the shift is such that -- If it is sudden
enough that there is now way you can recover, you may lose data.
But that is an extreme case, and there is probably going to be
more problems in the system than the launch of the data on this
bus.

Slide 36:
The transmitter in Virtex-4 is very straightforward. We use
BUFIO and BUFR for the clock distribution, very similar to the
receiver. We use the OSERDES block to serialize the data and
the FIFO16 to move data from core to interface.

Slide 37:
Not surprisingly, the block diagram looks very, very similar to
the receiver; everything is very symmetrical and very packed.
It's all packed into the IOD. The first thing I would like to
point out, and this is true for the receiver block diagram:
What's shown here is three clock regions. It does not take
three clock regions to implement this interface. This is how
spread it could be. This is spread across one and a half tanks
***. But you can connect this entire bus in a single clock
region.

Slide 38:
Now we are going to move on to this SPI-4.2 up to core. Before
I do, everything I just mentioned about SFI-4, this is available
as a reference design, in "Application Help." I'll have a URL
at the end of the presentation. The SPI 4.2 information I'm
about to share is based on our ID-coristine *** development
work, and this is available at the core.

Slide 39:
So, Xilinx SPI-4.2 in Vertex 4 is fully compliant with OIF-SPI4-
02.1. Ideal solution for packet over sign of ATM, and Ethernet
applications. Supports OC-192 line speeds 10 gig and beyond.
Supports both static and dynamic alignment modes that are laid
out in that delay specification. It is a point-to-point
interface and fully symmetrical. 16-bit data bus is LVDS.

Virtex-4 Source-Synchronous Interface Advantage Webcast Transcript

11 11

Indeed we are IO. And it is supported in all projects or
device.

Slide 40:
Now, DPA or Dynamic Phase Alignments is a version of bit skew
which I alluded to previously. So, the objective is obviously
to center sample data. But also, it's toward align. So, the
SPI-4.24 uses both uses both IDELAY and Bitslip in order to
compensate for channel skew. And it is capable and
characterized to compensate for up to plus or minus one bit
period skew.

Slide 41:
Advantages of DPA. Independent sample point determination for
each bit is a key advantage. That means that we are identifying
the most optimal sample point within our data valid window. And
this leaves the most amount of system timing margin on the table
for the rest of ***. This supports, is required for data rates
over 700 megabytes, 800 megabytes. I don't know exactly where
the SPI-4.2 cutoff point is. And we have the reduced the size
of this core by 50% with respect to Virtex-2 and the Virtex-2
Pro implementation.

Slide 42:
So, on the black diagram, you can see the user interface, which
is a 64-bit interface. The SPI-4.2 implementation is also four-
to-one to elevation, 24 deserialization. They use a data source
from Tree FIFO for the core to user logic company and status
memory where all of the flags on the interface. *** resources
used. It's not.

Slide 43:
So, the SPI-4.2 metered components in DPA, very similar to what
I was mentioning with SFI-4. Using I-34 receiving, an IDELAY
chain, Bitslip module, and the chip ***. Data recovery using
the IDELAY state machine which is similar to the platform ***
methodology. However, it is making use of the SPI-4.2 training
pattern to interrogate actually each data bit independently.
So, each data eye is interrogated and optimally set for the SPI
production training pattern at start-up. And then lastly, bus
de-skew algorithm uses Bitslip to reorder the output of each eye
series such that each channel is word aligned going into the
fabric.

Slide 44:
So, quick summary encore. A gigabit per second for pin data
rates are available. We have reduce FPGA resources by 35%. I

Virtex-4 Source-Synchronous Interface Advantage Webcast Transcript

12 12

mentioned 50% before; I think that is with respect to the entire
core and IO resources, not just the fabric. In/outs are
flexible for this core. We've reduced power in the Vertex-4
architecture. *** greater than four cores in a single device.
And our data capture mechanism is even more accurate ***.

Slide 45:
This is the ML450 development board that my team designed. This
is used for verification of those designs that I just mentioned,
the SFI-4 implementation, and the SPI-4.2 implementation. Both
the core and the application can be implemented on this board
and checked out. We use Fantag *** and differential precision
interconnect cable for loop-back, so we can talk for ourselves
basically. You don't have to go board-to-board. We have our
customers use this board and others like it to talk to their own
systems by building paddlecard *** adapters, *** cable
connectors to their own card. This is available today. It can
be ordered. I'll show the URL at the end of the presentation.
Or you can contact direct local FAE and get a demo or possibly
borrow the board.

Slide 47:
And to sum up here, the key challenges that we've identified and
solved with this architecture: Data capture at high speeds.
Clock-to-data centering at "run time." There are multiple ways
to do this. We have numerous application notes that go into
detail on each different method, and they'll answer a lot of
questions I'm sure I've left open; Managing clock speeds up to
700 megahertz. We have quadrupled our clock resources and made
them fully differential; PCB layout challenge. IDELAY and
Bitslip to eliminate *** skew is critical. Our in-package
design and chip floor plan also helps in providing more
flexibility in terms of what items you need to choose, from the
FPGA designer, and from the PCB designer's perspectives. That
also address the last challenges, implementing multiple
interfaces.

Slide 48:
So, here's the URL I mentioned. Leverage the complete hardware
verified solutions to assure first time design success. You can
access this link to find information and contact on the core,
SPI-4.2 or RapidIO. Also, the application notes for SFI-4, or a
single-data rate 16-bit LVDS is more accurate; also information
on the ML450 source synchronous interfaces toolkit. You have
the reference designs, schematics, Gerber files, everything you
need to get going. OK, at this time, I'd like to open it up for
questions. It looks like we have a few here.

Virtex-4 Source-Synchronous Interface Advantage Webcast Transcript

13 13

Question and Answer Session
Q: So, our first question, "What is the maximum IO speed of

Vertex for general purpose IO?"
A: LDS IO maximum speed is 98 per second EDR. And single-

ended IO including different *** to scale is I believe 300
-- 500 megahertz per second. No, I'm sorry, that's 300
megahertz per second.

Q: Are the data clocks *** to prevent reflection?
A: I'm assuming, you mean, the recovered clocks, are they

terminated on the EGA? Yes, for LVDS inputs, all LVF
inputs, we have on-ship *** determination natchpees ***
that you set ***.

Q: Is data centering using *** block performed continuously?
A: Yes, this can be done continuously. You have full access

to increment and accruement *** that perhaps as a lay
element. And reset, so that is all done in the fabric.
True, what really is meant by continuously? There is one
implementation that we call window monitoring. We use the
fairwell *** side of the input tree. I'll draw you a
picture. Every IOD has a master and slave side. For any
LVDS input, you will use the master side IO logic and not
the slave side IO logic; that's redundant. So, what we do
is route all data channels to the slave side and clock that
into the fabric, so we're creating a mirror of all the data
streams coming in. By doing that, we can manipulate the
mirrored version of the data all we want without destroying
the incoming data. So we can continually interrogate the
data eyes, looking for differences between the mirror and
the real data. And if we see that the real data has
slipped with respect to the mirror, we can move the real
data without destroying it. That's the most optimal way of
insuring the best sampling over voltage and temperature and
time.

Q: Is this source synchronous implementation process automated
via synthesis, or does the user manually instantiate
elements such as Bitslip?

A: Bitslip will appear in the pin in the primitive view. So,
the user will manually instantiate an ISERDES primitive,
and they'll have access to pins on their primitives, like
the Bitslip enable pin and the IDELAY increment/accruement
pins. So, and those are all part of one big primitive.
The process is not entirely automated. And most of it is
implemented in hardware, so you're going to have to
substantiate primitives. It's only a handful of primitives
that we're talking about. We're talking a BUFIO, a BUFR
and ISERDES to build a receiver, basically. The catch is,

Virtex-4 Source-Synchronous Interface Advantage Webcast Transcript

14 14

in order to implement word aligning algorithms and data
centering algorithms, you need to use the fabric; there
needs to be some intelligence from a state machine. So,
the answer to that question is: Well, yes and no.

Q: Does Vertex core have support for SFI-5?
A: Not at this time.
Q: Did you have to resolve word alignment with the DDR-2

interface? If yes, what did you use?
A: Yes. You do have to resolve word alignment issues with any

interface that has *** skew. So, if you're doing per bit
deskews, or deskewing each lane, you have to address the
word alignment issue ***, even if you know the word
alignment interfaces are perfectly aligned. You need to
know in the fabric that your words are in the right place.
So, we use this procedure to do that, which is fully
documented. You can take a look at the source code on our
website, for -- I can't remember the application note
number, but look for the DDR Vertex for I/O application
note.

Q: What is a typical jitter using DCMs in Vertex-4? Do you
recommend using Oxitclot *** generation for ***?

A: This entirely depends on how fast your interfacing needs to
go. Typical jitter: The jitter is specified for RDCMs. I
can't remember off the top of my head what that stack is,
but you should be able to get that off the website. This
is entirely up to you. I can't answer that because I don't
know what you're talking to and how much *** you need in
the system. We did implement a bus using DCMs and NLCore-
50 ***, and we're able to transmit over about 18 inches of
cable and two connectors *** receiver, and we're able to
recover data with *** all the way up to -- I gave you the
per second *** DCM per transmitter. So, that's a tough
one.

Q: Is I-the-Way *** available in Vertex-2 Pro also?
A: No it is not available in Vertex-2 Pro. I-the_way is new

to Vertex-4.
Q: How do you determine the sampling point when a training

pattern is not available?
A: That's a great question. So, with SFI-4, what we showed

was a method for training to the clock. The sample of the
clock because we know what the pattern is. You know, it's
one *** pattern, so we're able to find the edges of the
clock, and thus we're able to determine what the center of
the data eye is for the clock. The assumptions for
training to the clock are that the bus has minimal skew and
***. You get a very similar thing for *** in the ***, and
unfortunately I'm not an expert in *** but you can get the

Virtex-4 Source-Synchronous Interface Advantage Webcast Transcript

15 15

application off the web as well.
Q: What do you use for a training pattern in the DDR-2

interface?
A: VDR-2 -- If you're talking about VDR-2 memories, don't -- I

don't believe that there is a training pattern for the VDR-
2 memory. For the SPI-4.2 interface, we use a *** of the
ten ones pattern, which is specified in the ***.

OK. If there's no more questions, I'll hand it back to the

operator.

Operator:
Thank you very much, Sean and Peter, for your presentation. And
I would like to thank everyone for attending today's
presentation of "High Performance Source Synchronous Interfaces
made Easy," brought to you today by Xilinx and TechOnLine
webcasts. I would like to remind you to please fill out and
submit the survey. This survey will open when you choose to
close your viewer window, or when the viewer window closes
automatically at the end of the webcast. By submitting this
survey, you will be providing Xilinx and TechOnLine with
valuable feedback on the subjects covering the webcasts, and
also we can improve the webcasts further. This presentation
will be available to all *** users in on demand format. You
will receive an e-mail with information how you can access the
on demand version of this webcast. Thank you again for
attending. We hope you can join us for future on-line webcasts.
For a current schedule and on demand events, please go to
www.techonline.com.

End of XilinxMar2905_ PeterAlfie_SeanKoontz Webcast

