
XAPP704 (v1.2) February 8, 2005 www.xilinx.com 1

© 2004-2005 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and further disclaimers are as listed at http://www.xilinx.com/legal.htm. All other
trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

NOTICE OF DISCLAIMER: Xilinx is providing this design, code, or information "as is." By providing the design, code, or information as one possible implementation of this feature,
application, or standard, Xilinx makes no representation that this implementation is free from any claims of infringement. You are responsible for obtaining any rights you may
require for your implementation. Xilinx expressly disclaims any warranty whatsoever with respect to the adequacy of the implementation, including but not limited to any warranties
or representations that this implementation is free from claims of infringement and any implied warranties of merchantability or fitness for a particular purpose.

Summary This application note describes single data rate (SDR) transmitter (Tx) and receiver (Rx)
interfaces in an Virtex-4™ FPGA using 17 low-voltage differential signaling (LVDS) pairs (one
clock and 16 data channels), suitable for SFI-4 or XSBI related applications. This design is
implemented using the ChipSync™ features. The accompanying reference design files include
an example targeting a Virtex-4 XC4VLX25-FF668 device. A UCF file is provided for
implementation of this design on the Xilinx ML450 development board. Please see design
characteristics/recommendation summary for further information on design requirements.

Introduction An SDR interface is defined as having only one single positive and negative transition of the
clock with respect to the data bit (shown in Figure 1). Thus, if the data rate is 500 Mb/s, the
clock frequency would be 500 MHz. SDR LVDS interfaces are described in a variety of
standards, among others, SFI-4 and XSBI.

This application note describes a method of implementing an SDR transceiver at frequencies
greater than the maximum operating frequency of the Digital Clock Manager (DCM). It also
uses components/features unique to the Virtex-4 architecture to facilitate creating designs at
700 MHz without exceeding the Virtex-4 AC timing specifications.

Figure 2 illustrates the overall system configuration, showing a full-duplex SDR link between a
Virtex-4 device and another device with an SDR transceiver. The Virtex-4 device requires a
reference clock with either LVDS or LVPECL differential outputs operating at the SDR clock
frequency to generate the transmit clock from the Virtex-4 device. Figure 2 shows a discrete
clock source operating at the SDR frequency.

Application Note: Virtex-4 Family

XAPP704 (v1.2) February 8, 2005

Virtex-4 High-Speed Single Data Rate
LVDS Transceiver
Author: Markus Adhiwiyogo

R

Figure 1: SDR Clock and Data Interface

word_0DATA

CLK

word_1 word_2 word_3

x704_01_090504

http://www.xilinx.com
http:www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm

2 www.xilinx.com XAPP704 (v1.2) February 8, 2005

Virtex-4 Implementation
R

Virtex-4
Implementation

Figure 3 shows a simplified Virtex-4 SDR transceiver block diagram as found in the reference
design, SDR_LVDS_TX_RX. This module contains IDELAYCTRL, TX_CLOCKS,
TX_CLK_AND_DAT, RX_CLK_AND_DAT, and RST_MACHINE. Details on each module are
described in the following sections.

Multiple transmitters and receivers can be implemented in the same Virtex-4 FPGA. When
multiple instances are needed, only TX_CLK_AND_DAT and RX_CLK_AND_DAT modules are
replicated, saving valuable global clock resources by not replicating the TX_CLOCKS module.

Sample code and design for the ML450 board are also provided in the reference design file
SDR_LVDS_AND_LOGIC_TOP.

Figure 2: Typical SDR Link System

x704_02_102104

Virtex-4 FPGA

Device
with
SDR

Interface

CLK

DATA<15:0>

CLK

DATA<15:0>

Reference Clock

REFCLK_P

REFCLK_N

Figure 3: Simplified Virtex-4 SDR Transceiver Block Diagram

TX_CLOCK

TX_CLK_AND_DAT

CLKOUTPTXCLK

TXCLKDIV = TXCLK/4 CLKOUTN

DATAOUTP

DATAOUTN

RX_CLK_AND_DAT

CLKINP

CLKINN

DATAINP

DATAINN

RST Machine
for TXCLK Domain

RST Machine
for IDELAYCTRL

RST Machine
for RXCLK Domain

GCLKDIV

CLKI

Design
Data Logic

Path

Data from
ISERDES Data to OSERDES

IDELAYCTRL

x704_03_102104

http://www.xilinx.com

Virtex-4 Implementation

XAPP704 (v1.2) February 8, 2005 www.xilinx.com 3

R

TX_CLOCKS Module

The TX_CLOCKS module is designed to provide/generate all the clock frequencies necessary
to perform the transmit operations using OSERDES. There are two clocks generated by this
module: TXCLK and TXCLKDIV.

The reference design uses the SDR clock input (CLKI) to generate TXCLK and TXCLKDIV. The
CLKI input must already be in the global clock network. In this example, the frequency of
TXCLK is four times faster than TXCLKDIV. Connect these two clocks to the CLK and CLKDIV
inputs of the desired OSERDES.

Figure 4 illustrates the generated clocks.

To use this reference design, the skew of both TXCLK and TXCLKDIV must be minimized,
because the DCM is used to generate both TXCLK and TXCLKDIV. The TXCLKDIV is
generated at the CLKDV output of the DCM. Since the input clock frequency to the DCM is
greater than the DCM input frequency specification, the CLKIN_DIVIDE_BY_2 of the DCM
must be set to TRUE. Figure 5 shows a block diagram of the TX_CLOCK module using the
DCM.

Table 1 contains the module pin descriptions.

Figure 4: TX_CLOCKS Module Clock Waveforms

CLKI

TXCLK

TXCLKDIV

x704_04_090504

Figure 5: TX_CLOCKS Module Using a DCM

Table 1: TX_CLOCKS Module Pin Definitions

I/O Type Module Pin Name Definition

Input
CLKI SDR Clock Input

RST Active High Reset

Output

TXCLK1 Generated TXCLK Domain Output

TXCLKDIV1 Generated TXCLK divided-by-four domain output

TXDCMLOCKED DCM Locked Pin

Notes:
1. Both TXCLK and TXCLKDIV must be phase aligned.

CLKIN

CLKFB

CLKI
CLK0

TXCLK

TXCLKDIVCLKDV

DCM

x704_05_010405

BUFG external from
TX_CLOCKS module

http://www.xilinx.com

4 www.xilinx.com XAPP704 (v1.2) February 8, 2005

Virtex-4 Implementation
R

TX_CLK_AND_DAT Module

The transmitter (TX_CLK_AND_DAT) uses two different types of output modules, OSERDES
for the data channels and ODDR for the clock output. The data channels have instantiation
names with the prefix TX_DAT_OUT_ followed by a two digit number to denote the bit number.
The clock channel has an instantiation name with the prefix TX_CLK_OUT_ followed by a two
digit number. More of these blocks can be instantiated. Table 2 contains the module pin
description.

There are sixteen OSERDES blocks in this module to accommodate 64-bit of parallel data
input. Each OSERDES is set for 4:1 serialization. Table 3 summarizes the settings applied to all
OSERDES data channels.

Table 2: TX_CLK_AND_DAT Module Pin Definitions

I/O Type Module Pin Name Definition

Input

ORST Active High Reset

OCE Active High Output Enable

TXCLK1 SDR Clock

TXCLKDIV1 SDR Clock divided by 4

DATA_IN<63:0> 64-bit Parallel Data Input

Output

CLKOUTP

CLKOUTN

Differential Transmit Clock Output

DATAOUTP<15:0>
DATAOUTN<15:0>

16-bit Differential Data Clock Output

Notes:
1. Both TXCLK and TXCLKDIV must be phase aligned for proper transmitter operation. Xilinx recommends

using the TX_CLOCKS module to generate these two clocks.

Table 3: OSERDES Data Channel Settings

Parameter Name Parameter Value

DATA_RATE_OQ SDR

DATA_WIDTH 4

SERDES_MODE MASTER

http://www.xilinx.com

Virtex-4 Implementation

XAPP704 (v1.2) February 8, 2005 www.xilinx.com 5

R

When using OSERDES, the order of the data transmitted at every positive TXCLK edge is from
D1 to D4 (LSB to MSB). For cases larger than 4:1 serialization, the order of the data transmitted
is from D1 to D6 of MASTER OSERDES followed by D3 to D6 of SLAVE OSERDES. Since 3-
state is not used, all 3-state pins (TCE and T1 through T4) are tied to a logic Low. The 3-state
attributes are left as "Don’t Care".

The ODDR is used to forward the SDR transmit clock from the Virtex-4 FPGA. This is
implemented by connecting TXCLK into the ODDR clock (C) input pin and connect D1 and D2
pins to a logic High and a logic Low respectively. Using ODDR is the only way to forward clocks
from Virtex-4 FPGA to external devices.

Figure 6 shows the timing waveform of the transmitted data with respect to TXCLK and
TXCLKDIV.

All output pins from this module are connected to LVDS_25 output buffers. Figure 7 shows the
block diagram for TX_CLK_AND_DAT module.

Figure 6: TX_CLK_AND_DAT Output Waveforms

TXCLK

TXCLKDIV

D1

x704_06_102104

A E I

D2 B F J

D3 C G K

D4 D H

A B C D E F

L

OQ

Figure 7: TX_CLK_AND_DAT Module Block Diagram
x704_07_090604

CLKOUTPPRECLKOUT

PREDATOUT(0)

CLKOUTN

DATOUTP(0)

DATOUTN(0)

TX_CLK_OUT

TX_DAT_OUT_0

PREDATOUT(15) DATOUTP(15)

DATOUTN(15)
TX_DAT_OUT_15

TXCLK

TXCLKDIV

DATA_IN[63:0]

http://www.xilinx.com

6 www.xilinx.com XAPP704 (v1.2) February 8, 2005

Virtex-4 Implementation
R

RX_CLK_AND_DAT Module

The receiver (RX_CLK_AND_DAT) module has both clock recovery and data recovery blocks.

The clock recovery blocks include:

• BUFIO - to access IOCLK network

• BUFR - to access Regional Clock network

The data recovery blocks include:

• ISERDES - SERDES used to deserialize data

• ISERDES_ALIGNMENT_MACHINE - Logic to control data recovery in one channel using
IDELAY and BITSLIP

• FIFO16 - A FIFO to move data from the Regional Clock network into the Global Clock
network

Figure 8 shows a simplified block diagram for RX_CLK_AND_DAT module.

Figure 8: RX_CLK_AND_DAT Module Block Diagram

ISERDES
DATAINP(0)

DATAINN(0)

ISERDES
DATAINP(7)

DATAINN(7)

ISERDES_ALIGNMENT_MACHINE

DATA

FIFO DATA

RXCLKDIV RXCLK

4

4

64

ISERDES
DATAINP(8)

DATAINN(8)
DATA

4

ISERDES
DATAINP(15)

DATAINN(15)
DATA

4

BUFIOBUFR

GCLKDIV

DATA_OUT

x704_08_120204

http://www.xilinx.com

Virtex-4 Implementation

XAPP704 (v1.2) February 8, 2005 www.xilinx.com 7

R

The functionality of the sub-blocks are discussed in the following sections. Table 4 contains the
module pin descriptions.

All forwarded clock and data input pins are connected to LVDSEXT_25 input buffers.

RX_CLK_AND_DAT Module Clocking Network

In this reference design, the recovered clock must be connected to input buffers at the clock
capable I/Os. After the input buffer, the clock is connected to the BUFIO followed by a BUFR.

The BUFIO allows the recovered clock to access the IOCLK network. The IOCLK clock network
is used for the CLK (fast or SDR clock input) of ISERDES. IOCLK can span up to three adjacent
clock regions.

The BUFR is used to access the regional clock network and perform the clock divide function.
The BUFR is used to provide the CLKDIV (slow or divided SDR clock input) of ISERDES. The
regional clock network can span up to three adjacent clock regions. The BUFR divide function
is set to four to accommodate 1:4 deserialization.

Table 4: RX_CLK_AND_DAT Module Pin Definitions

I/O Type Module Pin Name Definition

Input

CLKINP
CLKINN

Differential Receive Clock Input

DATAINP<15:0>
DATAINN<15:0>

16-bit Differential Receive Data Inputs

IRDY When logic High, IDELAY is ready

USE_BITSLIP When logic High, data recovery state machine
performs the BITSLIP operation until the training
pattern in TRAINING_PATTERN is found

RST Active High Reset – For all logic

IRST Active High Reset – For all ISERDES

SCE Active High Clock Enable

TRAINING_PATTERN<3:0> 4-bit training pattern

LOCKED LOCKED signal input

GCLKDIV Global Clock Input – Frequency near RXCLKDIV

Output

RXCLKDIV Received Clock divided by 4

DATA_OUT<63:0> 64-bit Parallel Data Output

DATA_ALIGNED When logic High, the alignment process for one
data channel is complete

BUS_ALIGNED When logic High, the alignment process across
all data channels is complete

SEND_CLOCK When logic High, the alignment machine is
requesting a clock signal at the data input pins

http://www.xilinx.com

8 www.xilinx.com XAPP704 (v1.2) February 8, 2005

Virtex-4 Implementation
R

The Figure 9 illustrates the recovered clock network.

Figure 9: RX_CLK_AND_DAT Clock Network

ISERDES
DATAINP(x)

DATAINN(x)

ISERDES

ISERDES

ISERDES

RXCLK

ISERDES

CLKINP

CLKINN

ISERDES

ISERDES

ISERDES

BUFIOBUFR
Divide by 4

x704_09_102104

Clock
Region
Border

Clock
Region
Border

Logic

Logic

Logic

http://www.xilinx.com

Virtex-4 Implementation

XAPP704 (v1.2) February 8, 2005 www.xilinx.com 9

R

ISERDES Block Characteristics

There are sixteen ISERDES blocks in this module to accommodate the 16 serial data inputs.
Each ISERDES is set for 1:4 deserialization. Table 5 summarizes the data channel ISERDES
settings.

When using ISERDES, the order of the data received into fabric at every RXCLKDIV cycle is
Q1 to Q4 (last in to first in). For cases larger than 4:1 serialization, the order of the data received
from (last in to first in) Q1 to Q6 of MASTER ISERDES followed by Q3 to Q6 of SLAVE
ISERDES. Figure 10 illustrates the order of data from ISERDES into the FPGA fabric.

Since IDELAY and BITSLIP features are turned on, the BITSLIP, DLYINC, DLYCE, and
DLYRST are connected to control pins.

Table 5: ISERDES Settings

Parameter Name Parameter Value

BITSLIP_ENABLE TRUE

DATA_RATE SDR

DATA_WIDTH 4

INTERFACE_TYPE NETWORKING

IOBDELAY IFD

IOBDELAY_TYPE VARIABLE

IOBDELAY_VALUE 0

NUM_CE 1

SERDES_MODE MASTER

Figure 10: Input and Output Data Relationship of ISERDES

D0 D1 D2 D3

D3

D4 D5DAT

RXCLK

RXCLKDIV

Q1

D2Q2

D1Q3

D0Q4

x704_10_090604

http://www.xilinx.com

10 www.xilinx.com XAPP704 (v1.2) February 8, 2005

Virtex-4 Implementation
R

ISERDES_ALIGNMENT_MACHINE Module

ISERDES_ALIGNMENT_MACHINE optimally centers the recovered clock to the data valid
window of the incoming data using the IDELAY feature of ISERDES. In addition, when needed,
this module uses the BITSLIP feature to reorder data into the desired training pattern.

Table 6 summarizes all the pins available in this module.

Bus Alignment is a method of data recovery outlined in this application note. When using this
method for data recovery, all data is aligned to the center of the clock. Prior to using this
method, the skew between all incoming data and clock channels must be minimized.
Additionally, the data transition edge is closely aligned to the positive clock of the incoming
clock. This method is useful in applications where the transmitter does not provide a training
pattern (i.e., SFI-4).

Using the bus alignment method, the receive clock is sampled by a 1:4 SDR SerDes
(ISERDES). Four of the ISERDES outputs are used to monitor the edge transitions when
IDELAY taps are applied to the registered clock input. The edge transition detection and the
number of taps applied determine the data valid window width and the tap location to center
align the data with respect to the clock.

Table 6: ISERDES_ALIGNMENT_MACHINE Module Pin Definitions

I/O Type Module Pin Name Definition

Input

RXCLKDIV Received clock divided by 4

RST Active High reset – for all logic

SAMPLED_CLOCK<3:0> The logic values when clock is sampled at
a give number of IDELAY taps

IRDY When logic High, IDELAY is ready

USE_BITSLIP When logic High, the data recovery state
machine performs a BITSLIP operation
until the training pattern in
TRAINING_PATTERN is found

TRAINING_PATTERN<3:0> 4-bit training pattern

SAP When logic High, starts the alignment
process from beginning

RXDATA<3:0> 4-bit data recovered from ISERDES

Output

INC Increments/Decrements the number of
IDELAY taps used

ICE Enables/Disables change in the number of
IDELAY taps used

BITSLIP When logic High, ISERDES uses the
BITSLIP process

DATA_ALIGNED When logic High, the alignment process
on the current data channel has been
completed.

SEND_CLOCK When logic High, the alignment machine is
requesting clock signal at data input pins.
For channel alignment method, see
“Appendix A”.

http://www.xilinx.com

Virtex-4 Implementation

XAPP704 (v1.2) February 8, 2005 www.xilinx.com 11

R

Since this method requires sampling a receive clock, a slight change is made to the recovered
clock network connection. Instead of directly connecting the clock input into a BUFIO, an
ISERDES is inserted in between this connection.

The designer must connect the clock into the ISERDES D input. The ISERDES outputs used
are the unregistered (O) output and the registered (Q) outputs. The O output is connected to
the BUFIO input. IDELAY is only applied to the Q outputs. Table 7 summarizes the ISERDES
settings.

The block diagram in Figure 11 shows the clock-to-data recovery scheme.

The process to determine the window width and to center align the data follows:

1. Increment IDELAY taps until a 1-to-0 edge transition is found. The first 1-to-0 edge
transition indicates the beginning of a data valid window.

2. Begin counting the number of IDELAY taps.

3. Continue incrementing IDELAY taps until another 1-to-0 edge transition is found. When the
second 1-to-0 edge is found, the data valid window width has been determined.

4. Decrement the IDELAY taps by ½ of the data valid window width. This allows the IDELAY
tap at the center of the data valid window width to be used.

5. The IDELAY tap is moved for all data channels to the amount found in step 4.

This alignment scheme assumes minimized skew between all data channels and clock channel
and the data transition edge is closely aligned to the positive clock of the incoming clock.

Table 7: ISERDES Settings

Parameter Name Parameter Value

BITSLIP_ENABLE False

DATA_RATE SDR

DATA_WIDTH 4

INTERFACE_TYPE Networking

IOBDELAY IFD

IOBDELAY_TYPE Variable

IOBDELAY_VALUE 0

NUM_CE 1

SERDES_MODE Master

Figure 11: Alternate Clock Data Recovery Circuit

CLK

O

Q

D

CLKDIV

SAMPLED_CLOCK

BUFIOBUFR
RXCLKDIV RXCLK

ISERDES

x704_11_102104

http://www.xilinx.com

12 www.xilinx.com XAPP704 (v1.2) February 8, 2005

Virtex-4 Implementation
R

Figure 12 illustrates the relationship between the receive clock (RXCLK) and the
sampled/delayed clock to show the algorithm.

In Figure 12, the RXCLK is initially behind the clock to be sampled (edge 1 comes after edge 2).
The clock to be sampled is incremented by the tap delays until a 1-to-0 transition is found at the
Q outputs of the ISERDES. When this is true, edge 2 comes after edge 1. The clock to be
sampled is continually incremented until another 1-to-0 transition is found. When this is true,
edge 3 comes after edge 1. Finally, edge 1 is placed between edge 2 and edge 3 to center align
the data with respect to the clock.

The current bus alignment module state is indicated by a combination of the DATA_ALIGNED
and SEND_CLOCK pins. Table 8 summarizes the relationship between these two pins and the
alignment process state of this module.

When the clock to data alignment process is complete, this module moves to the data
reordering portion of the alignment. After asserting the USE_BITSLIP pin to a logic High and
setting TRAINING_PATTERN into a desired 4-bit training pattern, the reordering portion uses
the BITSLIP pattern until the desired 4-bit training pattern is found. It also requires the
transmitting device to send the desired pattern.

To reduce slice utilization, remove the logic in the state machine by removing the 0101 and
0110 states and the associated control pins generated by these states. Also, remove the
BITSLIP pin connections from ISERDES and set BITSLIP_ENABLE to FALSE.

When both IDELAY and BITSLIP operations are completed, the DATA_ALIGNED bit will be
asserted High.

Figure 12: Timing Relationship Between Rx Clock and Sampled Clock

Table 8: DATA_ALIGNED and SEND_CLOCK Relationship with Alignment State

DATA_ALIGNED and
SEND_CLOCK Value

State

00 Performing word alignment (optional)

01 Performing bit alignment

10 All alignment processes are completed

11 Don’t care – Defaults to all alignment processes are completed

RXCLK

Sampled Clock(4)

Sampled Clock(1)

Sampled Clock(2)

Sampled Clock(3)

x704_12_102104

Edge 1

Edge 3 Edge 2

Edge 2Edge 3

Edge 3 Edge 2

Edge 3 Edge 2

http://www.xilinx.com

Virtex-4 Implementation

XAPP704 (v1.2) February 8, 2005 www.xilinx.com 13

R

FIFO16 Modules

In this application note, a FIFO is needed to transfer the data recovered from the Regional
Clock domain to the Global Clock domain. By transferring to the Global Clock domain, any logic
required for data processing with the recovered data will not be limited to three clock regions.
The logic can be implemented across the FPGA.

Two FIFO16s primitives are instantiated to create two 512 x 36 bit FIFOs. Since the data
deserialized by ISERDES is 64-bit, the reference design uses two FIFO16.

Additional control logic is implemented for the FIFO16 to operate, with the following conditions:

1. Begin writing into FIFO from Regional Clock domain after all ISERDES have finished
alignment process

2. Begin reading data into the Global Clock domain when at least 50 entries are in the FIFO

3. Stop writing data into the FIFO from Regional Clock domain when less than 50 spaces are
available in the FIFO

These conditions can be changed depending on the desired conditions. Xilinx recommends a
clock frequency of the write clock that is slower than or equal to the read clock. By meeting this
clock frequency conditions, a FIFO overflow will not occur.

IDELAYCTRL Module

Since this design uses IDELAY, IDELAYCTRL is needed in order to guarantee proper operation
of IDELAY in the Virtex-4 FPGA. IDELAYCTRL requires the following two conditions for proper
operation.

• Input reference clock (REFCLK) of 200 MHz

• Minimum of 50 ns of active High reset pulse after startup

For more information on IDELAYCTRL, please refer to the Virtex-4 User Guide.

RST_MACHINE Module

This module is used to create a synchronous reset for all elements in given clock domain. This
module is also used to create an active High reset pulse for a desired duration of time. As an
example, IDELAYCTRL requires an active High reset duration of (50 ns).

To initiate the reset pulse, use an input clock and a stimulus. The reset pulse generated by this
the RST_MACHINE module should be connected to all elements in the design that are clocked
by the input clock.

The number of clock cycle for the active High reset is the comparator value of COUNT_VALUE
in the state machine portion of this module. To shorten or lengthen the duration, change this
comparator value.

Table 9 summarizes all the pins available in this module.

Table 9: RST_MACHINE Module Pin Definitions

I/O
Type

Module Pin
Name

Definition

Input

CLK_generic The clock domain in which the reset pulse is needed

RST_stimulus When active High, DOMAIN_RST will be generated

IRDY IDELAYCTRL ready signal

Output DOMAIN_RST Active High reset pulse output – This should be connected to all
reset pins of elements clocked by the clock connected to
CLK_generic input pin

http://www.xilinx.com

14 www.xilinx.com XAPP704 (v1.2) February 8, 2005

Virtex-4 Implementation
R

Top Level Module - SDR_LVDS_AND_LOGIC_TOP

This module uses Virtex-4 FPGAs and the ML450 development board to demonstrate the Tx
and Rx loopback. The SDR_LVDS_TX_RX performs both IDELAY and BITSLIP during the
alignment process. It also contains, a PRBS data generator, a FIFO to store data transmitted,
and a checker using a DSP48 slice to compare incoming data and data sent. The UCF file
targeted for the ML450 board is called sdr_lvds_and_logic_top.ucf. The design functions
correctly when both FINAL_BUS_ALIGNED and FINAL_DATA_CHECK are asserted High.

Figure 13 illustrates a simplified block diagram of this module.

Simulation for SDR_LVDS_AND_LOGIC

The reference design is simulated using ModelsSim SE 5.8b. The simulation testbench is
SDR_LVDS_AND_LOGIC_TOP_TESTBENCH.v, and the script is top.do. Type Run top.do to
invoke the script at the Modelsim command prompt. In this simulation, the design functions
correctly when both FINAL_BUS_ALIGNED and FINAL_DATA_CHECK are asserted High.
Some lines in the .do file must be changed to reflect the working directory or a library location.

ISE Implementation

This design is compiled using ISE 6.3i. Files needed for this implementation are:

• SDR_LVDS_TX_RX.v

• SDR_LVDS_AND_LOGIC_TOP.v (topmost level file)

• SDR_LVDS_AND_LOGIC_TOP.ucf

The UCF file is associated with SDR_LVDS_AND_LOGIC_TOP.v

When using the ML450 development board, select XC4VLX25-11FF668 as the target device.

The following settings must be turned on or turned off:

• Synthesize - XST - Equivalent Register Removal (unchecked)

• Implement Design - MAP Properties - Trim Unconnected Signals (unchecked)

Some warnings may occur. Refer to the readme.txt file for further information on these
warnings.

Figure 13: SDR_LVDS_AND_LOGIC Simplified Block Diagram

SDR_LVDS_TX_RX

DATA_SOURCE

FIFO

CHECKER

CHECKER
Signals

DSP48
Slice

Connected when using
TESTBENCH

SDR_LVDS_AND_LOGIC_TOP

x704_12_112904

http://www.xilinx.com

Design Summary

XAPP704 (v1.2) February 8, 2005 www.xilinx.com 15

R

Table 10 summarizes the Virtex-4 device utilization on the ML450 development board.

Design
Summary

The Virtex-4 reference design assumes the following design parameters.

• Requires Flip-Chip packaged Virtex-4 FPGA

• Requires LVDSEXT at the receiver

• Current design is a 4:1 Serializer/Deserializer (SERDES)

• Place Tx and Rx pins in either left or right I/O column

• Group Tx pins as closely as possible to minimize skew (both on the board and on the
device).

• Group Rx pins as closely as possible to minimize skew (both on the board and on the
device) and the number of clock region used.

Table 10: SDR LVDS Device Utilization on the ML450 Development Board

Component Name Device Utilization

Number of External IOB 105

Number of LOCed External IOB 41

Number of External IOBM 17

Number of External IOBS 17

Number of DSP48 4

Number of FIFO16 4

Number of ISERDES 17

Number of OLOGIC 2

Number of OSERDES 16

Number of Slices 304

Number of BUFG 5

Number of BUFIO 1

Number of BUFR 1

Number of DCM 2

Number of IDELAYCTRL 16 (IDELAYCTRLs were not LOC constrained)

http://www.xilinx.com

16 www.xilinx.com XAPP704 (v1.2) February 8, 2005

Conclusion
R

Table 11 summarizes the device utilization of this design (excluding the ML450 development
board design utilization).

Conclusion Virtex-4 devices can implement single data rate,16-bit, LVDS data transmission and reception
at 700 MHz. This design can easily be expanded for data larger than 16-bit wide data.

Appendix A ISERDES_ALIGNMENT_MACHINE Changes for Channel Alignment

The channel-alignment method optimally aligns each individual data channel to the center of
the clock. This method differs from bus-alignment because the minimization of the skew
between all data channels and the clock channel is not needed, however, a training pattern is
required by the transmitter.

The channel-alignment methodology uses the training pattern to determine the data valid
window at each individual data channel. The training pattern is assumed to be alternating
between 1 and 0 at ½ the SDR clock frequency. This method also uses edge transitions to
determine the data valid window width, and to center align data with respect to the clock.

The process to determine the window width and to center align the data follows:

1. Request the transmitter to send clock signal by asserting SEND_CLOCK pin.

2. Increment the delay until a 0-to-1 transition is found. This edge transition indicates the
beginning of a data valid window.

3. Begin counting the number of IDELAY taps.

4. Continue incrementing IDELAY taps until a 1-to-0 edge transition is found. This edge
transition indicates that the data valid window width is known.

5. Decrement the IDELAY taps by ½ of the data valid window width. This allows using the
IDELAY tap at the center of the data valid window width.

6. The IDELAY tap of the aligned data channel is moved to the amount found in step 5.

7. Repeat this for the next data channel and until all data channel are aligned (implemented in
the ROUND_ROBIN_ALIGN_CONTROL module).

Table 11: SDR LVDS Device Utilization in a Virtex-4 Device

Component Name Device Utilization

IOB 17 differential data and clock inputs
17 differential data and clock outputs
2 differential clock inputs (SDR clock and REFCLK)

FIFO16 2 for Receiver

ISERDES 17 (16 for data, one for bus alignment)

OSERDES 16

OLOGIC 1 (for Tx clock forwarding)

BUFIO 1

BUFR 1

DCM 1

IDELAYCTRL 16 (IDELAYCTRLs are not location constrained)

BUFGs 5

Slices 62

http://www.xilinx.com

Appendix A

XAPP704 (v1.2) February 8, 2005 www.xilinx.com 17

R

Figure 14 illustrates the timing relationships between the data and clock channel during the
alignment process.

In the Figure 14 timing diagram, edge 1 of RXCLK is sampling "Data In." "Data In" delay is
incremented until a positive edge (edge 2) is detected by edge 1 of RXCLK. This state is
illustrated by "Data In Delayed (1)." The delay is continually incremented until a negative edge
(edge 3) is detected by edge 1 of RXCLK. This state is illustrated by "Data In Delayed (2)."
Finally, the delay for "Data In" is decremented by half of the increment value, to center align
data with edge 1 of RXCLK. This completes the alignment process.

The current channel alignment module state is indicated by a combination of the
DATA_ALIGNED and SEND_CLOCK pins.

ROUND_ROBIN_ALIGN_CONTROL Module

This module controls the alignment process for each receive data channel, when the channel
alignment method is used. This module starts the alignment process from channel 1 to x, one
at a time by starting at channel 1 and moving to the next channel while incrementing the value
of CHANNEL_LOCKED by one when the DATA_ALIGNED pin from
ISERDES_ALIGNMENT_MACHINE is asserted High. After CHANNEL_LOCKED value is
updated, this module sets the SAP pin to a logic High causing the
ISERDES_ALIGNMENT_MACHINE module to perform the alignment process for the new
channel. All channel are aligned when CHANNEL_LOCKED is equal to the number of channels
in the design (16 in this example). To change the number of channels to be aligned, change the
comparator value of CHANNEL_LOCKED in the following code under RX_CLK_AND_DAT to
the desired number of channels and the comparator value of CHANNEL_LOCKED.

assign BUS_ALIGNED = (CHANNEL_LOCKED == 5'h10) ? 1'b1 : 1'b0;

Figure 14: Timing Relationships Between Data and Clock

RXCLK

Data In

Data In
Delayed(1)

Data In
Delayed(2)

Final Data In

x704_11_090604

Edge 1

Edge 2Edge 3

Edge 3 Edge 2

Edge 3 Edge 2

Edge 2Edge 3

http://www.xilinx.com

18 www.xilinx.com XAPP704 (v1.2) February 8, 2005

Revision History
R

Also change the following code under ROUND_ROBIN_ALIGN_CONTROL to the desired
number of channels minus 1.

else if((DATA_ALIGNED == 1'b1) && (CHANNEL_LOCKED != 5'h0F))
begin
COUNT_CHANNEL = 1'b1;
NEXT_STATE = 2'b01;

end
else if((DATA_ALIGNED == 1'b1) && (CHANNEL_LOCKED == 5'h0F))

begin
COUNT_CHANNEL = 1'b1;
NEXT_STATE = 2'b10;

End

When the ROUND_ROBIN_ALIGN_CONTROL is completed, the BUS_ALIGNED pin of
RX_CLK_AND_DAT is asserted High.

Table 12 summarizes all the pins available in this module.

Revision
History

The following table shows the revision history for this document.

Table 12: ROUND_ROBIN_ALIGN_CONTROL Module Pin Definitions

I/O Type Module Pin Name Definition

Input

RXCLKDIV Received Clock divided by 4

RST Active High Reset – For all logic

DATA_ALIGNED When logic High, current channel
selected has finished alignment

Output

START_ALIGN_PROCESS When logic High, start alignment
process for current channel selected

CHANNEL_LOCKED<4:0> The number of channels locked at a
given time. (5-bits)

Date Version Revision

11/01/04 1.0 Initial Xilinx release.

12/10/04 1.1 Revised Figure 8 and Figure 13 ,Table 6, Table 10, and Table 11,
and the “Design Summary” section.

02/08/05 1.2 Revised the section “TX_CLOCKS Module,” page 3, Figure 5,
Table 10, and Table 11 to use only the DCM.

http://www.xilinx.com

	Virtex-4 High-Speed Single Data Rate LVDS Transceiver
	Summary
	Introduction
	Virtex-4 Implementation
	TX_CLOCKS Module
	TX_CLK_AND_DAT Module
	RX_CLK_AND_DAT Module
	RX_CLK_AND_DAT Module Clocking Network
	ISERDES Block Characteristics
	ISERDES_ALIGNMENT_MACHINE Module
	FIFO16 Modules
	IDELAYCTRL Module
	RST_MACHINE Module
	Top Level Module - SDR_LVDS_AND_LOGIC_TOP
	Simulation for SDR_LVDS_AND_LOGIC
	ISE Implementation

	Design Summary
	Conclusion
	Appendix A
	ISERDES_ALIGNMENT_MACHINE Changes for Channel Alignment
	ROUND_ROBIN_ALIGN_CONTROL Module

	Revision History

