
1 
 

XSV Board 1.0 – VHDL Interfaces and Example Designs 
 

Audio Project 
 
School of Computer Science and Electrical Engineering 
University of Queensland, Brisbane, Australia. 
http://www.csee.uq.edu.au/ 
 
Last Modified: 23 February 2001 
 
 
Contents 
 
1.0 About this design............................................................................................................................................... 1 
2.0 Files needed for this design............................................................................................................................... 1 

List of Files........................................................................................................................................... 1 
File Descriptions .................................................................................................................................. 1 

3.0 Description of the design................................................................................................................................... 2 
Clocks................................................................................................................................................... 2 
Serial Data ............................................................................................................................................ 2 
Interaction with RAM .......................................................................................................................... 2 
Controls ................................................................................................................................................ 3 
Extensions ............................................................................................................................................ 3 

 
 
1.0 About this design 
 
The audio project is rather simple as the ADC/DAC provided is easy to use and produces an easy to read 
output.  Due to limitations in the clock speed multiplier selections, the audio project samples at a frequency of 
48.8 kHz instead of the normal 48kHz that would be used.  This project allows recording and playback of just 
over 10 seconds of sound and has options to play back the sound at doubled speed, reversed etc. 
 
2.0 Files needed for this design 
 

List of Files 
• remap.vhd  
• audiotop.vhd 
• audio.vhd 
• player.vhd 
• recorder.vhd 
• sram512k32bit50mhz-sv05 
• audiopins.ucf 

File Descriptions 

remap.vhd 
Renames ports to fit the ucf file.  Top level file of the project 

http://www.csee.uq.edu.au/


2 
 

audiotop.vhd 
Connects the audio entity to the ram controller. 

audio.vhd 
Creates clocks for the audio codec and connects the recorder and player devices together. 

player.vhd 
Reads audio data from RAM and coverts it into serial data for the audio codec.  Requires the clocks 
SCLK and LRCK as input to produce data at the right time. 

recorder.vhd 
Converts serial data from the audio codec into data which is stored in RAM.  Requires the clocks SCLK 
and LRCK as input to read data from the serial input at the right time. 

sram512k32bit50mhz-sv05 
RAM controller to read and write RAM. 

audiopins.ucf 
Constraints file for the audio design 
 

3.0 Description of the design 

Clocks 
There are three clocks generated by the FPGA to control the AK4520A which are all generated by the 
50MHz input clock.  Their frequencies are: 
 
MCLK = 12.5MHz 
SCLK = 3.125MHz 
LRCK = 48.828kHz 
 
SCLK is also used to clock the audio playback and recording devices, and both of these read the value of 
LRCK to determine when to start each sample. 

Serial Data 
Serial data in and out is limited to 16 bits.  The chip actually outputs 20 bits of data, but only the most 
significant 16 are stored during recording, and the last 4 bits in playback are always zero.  This is required 
as the RAM is only 16 bits wide.  Data is clocked into the recorder on the positive edge of SCLK, and 
data is changed during playback on the negative edge of SCLK.  This means the data will always be ready 
at the right time.  It is likely that some of the most significant bits of RAM are not being used under 
normal circumstances (as the sound doesn’t get that loud).  For this reason, a different slice of the data 
(e.g. bits 17 to 2) could be taken giving better precision, but a smaller range. 

Interaction with RAM 
The audio project uses the entirety of RAM for both reading and writing.  The left bank is used for the left 
channel of data, the right bank is used for the right channel.  Both banks are operated on simultaneously 
for both writes and reads, and the data bus is treated as being 32 bits wide.  The RAM controller affects 
how the data is split up.  At 48.828 kHz, the RAM can only store about 10.74 seconds of data.  When this 
limit is reached, both the recording and playback devices will stop and wait to be told to start again.  Also, 



3 
 

RAM operations occur at different times in the cycle, so playback and recording can happen 
simultaneously. 
 

Controls 
The four pushbuttons are mapped to control signals for the audio project and the reset button.  The 
functions of the pushbuttons are: 
1: Reset 
2: Playback stop 
3: Playback start 
4: Record start 
 
In the audio.vhd file, there is also some manipulation of the read address and read data of RAM.  This 
allows changes to how the audio plays back without changing the data in RAM and keeping the playback 
program the same.  The following table shows which choices are available for audio playback.  All of 
these are separate from each other and can be used simultaneously.  For normal operation, leave all inputs 
at 1. 
 

Signal name Switches Value Description 
Direction 1 0 

1 
Playback is in the reversed direction 
Playback is in the forward direction 

Speed 2,3 0,0 
0,1 
1,0 
1,1 

First half of buffer is played at ½ normal speed 
Second half of buffer is played at ½ normal speed 
Entire buffer is played twice at double speed 
Entire buffer is played once at normal speed 

Precision 4 0 
1 

Playback uses 8-bit precision 
Playback uses 16-bit precision 

Volume 5,6 0,0 
0,1 
1,0 
1,1 

Volume is quadrupled with capping for overflow 
Volume is doubled with capping for overflow 
Volume is halved 
Normal playback volume 

 

Extensions 
 

The following could be done to increase the amount of data that can be stored at one time: 
 
Move to 8-bit precision.  This would double the amount of data that can be stored.  If this were done, it 
would be good to find exactly which bits are needed, as it seems the most significant 8 bits are probably 
not a good choice for most applications. 
 
Only use mono sound rather than stereo.  This will also leave twice as much room for data. 
 
Change sampling speed.  By only writing every second sample, but playing every sample twice, the 
sampling rate would be decreased and the storage space doubled. 
 
It is also very easy to operate on data while it is not being used by the playback and recording devices.  In 
this way, real time audio manipulation can be performed with simple algorithms. 


	1.0 About this design
	2.0 Files needed for this design
	List of Files
	File Descriptions
	remap.vhd
	audiotop.vhd
	audio.vhd
	player.vhd
	recorder.vhd
	sram512k32bit50mhz-sv05
	audiopins.ucf


	3.0 Description of the design
	Clocks
	Serial Data
	Interaction with RAM
	Controls
	Extensions


