
1

XSV Board 1.0 – VHDL Interfaces and Example Designs

PC to SRAM Interface

School of Computer Science and Electrical Engineering
University of Queensland, Brisbane, Australia.
http://www.csee.uq.edu.au/

Last Modified: 23 February 2001

Contents

1.0 About this design... 1
2.0 The stand-alone design vs. the VHDL module ... 2

2.1 The stand-alone PC-to-SRAM interface .. 2
2.2 The PC-to-SRAM interface VHDL module .. 2

3.0 Files needed for the stand-alone design .. 3
3.1 List of Files... 3
3.2 File Descriptions .. 3

4.0 Files needed for the VHDL module .. 3
4.1 List of Files... 3
4.2 File Descriptions .. 3

5.0 CPLD requirements for the PC-to-SRAM interface ... 4
6.0 Using the PC-to-SRAM interface module in a user design .. 5

6.1 Module ports .. 5
6.2 Requirements for using the module ... 5
6.3 Converting a design to use “sraminterfacewithpport” instead of “sraminterface” 6

7.0 Communication protocol overview... 6
7.1 Operations .. 6
7.2 Signals used.. 7

8.0 Communication protocol details ... 8
8.1 Initialising the PC-to-SRAM interface... 9
8.2 Performing the set address operation ... 9
8.3 Performing the write operation .. 9
8.4 Performing the read operation.. 10
8.5 Performing the apply settings operation .. 10

1.0 About this design

This design provides an interface for a PC to access the SRAM on the XSV board through the board’s parallel
port connection. When this interface is programmed into the Virtex FPGA, a connected PC can read from and
write to any location in one bank of the SRAM. This document describes two designs that implement this PC-
to-SRAM interface – a stand-alone design and a VHDL module.

The author would like to acknowledge a similar design for the XS40 board (also from XESS Corp.) developed
by Universidad de Sevilla. Their design was a source of ideas for the design presented in this document for the
XSV board. See http://www.xess.com/projects/xs_pc_intfc.pdf and
http://www.xess.com/projects/xs_pc_intfc.zip for the Universidad de Sevilla design.

http://www.csee.uq.edu.au/
http://www.xess.com/projects/xs_pc_intfc.pdf
http://www.xess.com/projects/xs_pc_intfc.zip

2

2.0 The stand-alone design vs. the VHDL module

2.1 The stand-alone PC-to-SRAM interface
This design contains a top-level entity and can be directly implemented on the Virtex FPGA. When the
FPGA is configured with this design, a PC has complete read and write access (through a parallel cable)
to the left bank of SRAM on the XSV board.

Note that the PC-to-SRAM interface can be used to give access to either bank of SRAM. However, the
bank used must be specified in the top-level entity and UCF. Currently the top-level and UCF together
specify that PC is given access to the left bank of SRAM.

Once the stand-alone design has been implemented and its bit file generated, this bit file can be used at
any point as a debugging tool. Suppose that you are developing a design for the XSV board and at some
point wish to view the contents of one of the SRAM banks. Simply configure the FPGA with the bit file
of this stand-alone PC-to-SRAM interface. The content of the SRAM is unaffected by the configuration
process. Once the interface is programmed into the FPGA, a utility programme on the PC can be used to
view (and even change) the SRAM contents. A Visual Basic programme that provides these features,
“XSVSRAMUtility.exe” is included with this resource collection. See the document called “XSV SRAM
PC Utility”, which describes the programme.

2.2 The PC-to-SRAM interface VHDL module
In addition to the stand-alone version of the PC-to-SRAM interface, there is a reusable VHDL module
that provides the same functionality. This module is called “sraminterfacewithpport” and is defined in the
file “sraminterfacewithpport-sv01.vhd”. Note that this module itself contains other internal modules. As a
consequence, several VHDL files need to be added to a user design when the “sraminterfacewithpport”
module is going to be used. Note that “sraminterfacewithpport” is referred to in this document as the
“top-level” of the module, but it is not a top-level entity in the true sense of the word. This VHDL entity
is simply the highest-level entity of the module.

To understand this module, you first need to be familiar with the SRAM interface module (the VHDL
entity called “sraminterface”) in this resource collection. The SRAM interface provides a user design with
a simple interface to a bank of SRAM. The module is described in the document called “SRAM
Interface”.

The PC-to-SRAM interface VHDL module is designed as a replacement for the (plain) SRAM interface
VHDL module. Wherever a user design uses the SRAM interface module, it can instead use the PC-to-
SRAM interface module. The PC-to-SRAM interface module provides the same direct access capabilities
to SRAM that the SRAM interface module provides. Additionally, however, the PC-to-SRAM interface
module also allows a PC to access the SRAM.

Using the PC-to-SRAM interface module, rather than the stand-alone design, makes viewing (and
changing) the SRAM contents from a PC a much simpler process. Suppose a user design has correctly
embedded the PC-to-SRAM interface module. The user design’s bit file has been generated and used to
configure the Virtex FPGA. When the time comes to view the contents of an SRAM bank, no new bit file
needs to be downloaded to the FPGA, because the user-design’s bit file already includes the circuitry
necessary to communicate with the PC. A utility programme on the PC can be used straight away to view
and change the contents of SRAM.

Thus the advantage of the PC-to-SRAM interface module over the stand-alone design is that no new bit
files need to be downloaded once the module is embedded in the user design.

3

3.0 Files needed for the stand-alone design

3.1 List of Files
• pctoleftsramtoplevel-sv02.vhd (Contains the top-level entity “pctosramtoplevel”)
• pctosraminterface-sv06.vhd
• sram512kleft16bit50mhzreadreq-sv05.vhd (or sram512kleft16bit50mhzreadreq-sv05c.vhd)
• UCF is :"Y pport, Y debug, Y timing, Y IOB outputs, N input delay, Y fast slew.ucf"

The “svXX” suffix on the filenames stands for “source version XX”. Previous versions of these files are
obsolete and have not been released.

3.2 File Descriptions

pctoleftsramtoplevel-sv02.vhd
This file contains the top-level entity for the design, which is called “pctosramtoplevel”. This entity
connects the PC-to-SRAM interface to the left bank of XSV SRAM.

pctosraminterface-sv06.vhd
This VHDL module is responsible for implementing the communication protocol that is used between the
PC and the XSV board. It translates requests from the PC into signals for the SRAM interface module and
vice-versa.

sram512kleft16bit50mhzreadreq-sv05.vhd
This is an SRAM interface module, which provides the actual access to the SRAM bank. For more
information on this module, see the document describing the “SRAM Interface” design.

The SRAM interface in this file uses a 2 clock cycle read. If you wish to use a 1 clock cycle read then the
file “sram512kleft16bit50mhzreadreq-sv05c.vhd” can be used in place of this file.

4.0 Files needed for the VHDL module

4.1 List of Files
• sraminterfacewithpport-sv01.vhd (This is the top-level (or highest-level) of the VHDL module).
• sram512kleft16bit50mhzreadreq-sv05.vhd (or sram512kleft16bit50mhzreadreq-sv05c.vhd)
• memorymultiplexor-sv01.vhd
• pctosraminterface-sv06.vhd

4.2 File Descriptions

sraminterfacewithpport-sv01.vhd
This file contains the actual PC-to-SRAM interface VHDL module called “sraminterfacewithpport”.
Although this entity is the highest-level entity of the module, it internally uses other VHDL modules.
That is why the other files below must also be added to any user design that uses the PC-to-SRAM
interface module.

sram512kleft16bit50mhzreadreq-sv05.vhd
The PC-to-SRAM interface module internally uses the SRAM interface module in this file to provide the
direct SRAM access capabilities. See section 2.0, “The stand-alone design vs. the VHDL module” above.

4

The SRAM interface in this file uses a 2 clock cycle read. If you wish to use a 1 clock cycle read then the
file “sram512kleft16bit50mhzreadreq-sv05c.vhd” can be used in place of this file.

memorymultiplexor-sv01.vhd
The VHDL entity “memorymultiplexor” in this file multiplexes the connections to the SRAM interface
module. At any point in time, the SRAM interface is either to be connected to the user design (allowing
the design normal SRAM access) or to the “pctosraminterface” entity (allowing a PC access to the
SRAM). This VHDL file takes care of switching these connections as necessary.

pctosraminterface-sv06.vhd
This VHDL module is responsible for implementing the communication protocol that is used between the
PC and the XSV board. It translates requests from the PC into signals for the SRAM interface module and
vice-versa.

5.0 CPLD requirements for the PC-to-SRAM interface

The PC-to-SRAM interface design requires the Virtex FPGA to connect to the XSV board’s parallel port
connector. The XSV board is such that the FPGA is able to connect to the parallel port connector only through
the CPLD. That is, the CPLD must be configured with a design that connects some of the FPGA pins, through
the CPLD, to the pins of the parallel port connector.

For the stand-alone PC-to-SRAM interface FPGA design, the CLPD must be configured so that the following
connections are made between the Virtex FPGA pins and the pins of the parallel port connector:

This Virtex
FPGA pin…

…must connect (through the CPLD)
to this parallel port connector pin:

P177 D0
P167 D1
P163 D2
P156 D3
P145 D4
P138 D5
P134 D6
P124 D7
P132 S3
P133 S4
P139 S5
P141 S6

For the PC-to-SRAM interface module, technically different Virtex FPGA pins could be specified, provided
that a corresponding change was made to the CPLD design. However, for simplicity, it is recommended that the
same Virtex FPGA pins listed in the above table be used.

The following are examples of CPLD designs that connect the pins in the manner listed in the above table:
• The default SVF file for the CPLD that comes with the XSV board, called “dwnldpar.svf”. Configuring the

CPLD with this SVF file allows the PC-to-SRAM interface to be used.
• The CPLD design associated with the IP Stack FPGA design in this collection. The source file for this

design is called “cpldnet.vhd”. The UCF for the CPLD for this design is called “cpldpins.vhd”.
Configuring the CPLD with this design will also allow the PC-to-SRAM interface to be used.

5

Any other CPLD design can be used, providing it makes the pin connections listed in the table above.

6.0 Using the PC-to-SRAM interface module in a user design

While using the PC-to-SRAM interface stand-alone design is relatively straight forward, using the module
version of the design is a little more involved.

The PC-to-SRAM interface module is a VHDL entity called “sraminterfacewithpport”.

6.1 Module ports
The “sraminterfacewithpport” entity includes all the ports found in the “sraminterface” entity. These ports
are :

Inputs: Outputs: Birdirectional:
CLK readData(15:0) SRAMLeftData(15:0)
Resetn canRead
doRead canWrite
doWrite CELeftn
writeAddr(18:0) OELeftn
writeData(15:0) WELeftn
readAddr(18:0) SRAMLeftAddr(18:0)

These ports are used by “sraminterfacewithpport” in exactly the same way as for the “sraminterface”
entity, as described in the “SRAM Interface” document.

The “sraminterfacewithpport” entity contains two extra ports in addition to the above ports. These two
extra ports are as follows:

Port name: Direction: Description:
ppdata(7:0) Input Must be connected to the data pins of the parallel port connector.
ppstatus(6:3) Output Must be connected to the status pins of the parallel port connector.

6.2 Requirements for using the module
Using the PC-to-SRAM interface module (i.e. the “sraminterfacewithpport” entity) in a user design
simply involves meeting the following requirements in regard to the module’s ports.

The ports that are identical to the SRAM interface ports (i.e. the ports of the “sraminterface” entity) are to
be connected in exactly the same way as they are for that interface. These connections are described in the
“SRAM Interface” document.

The two ports “ppdata” and “ppstatus” must have their connections directly propagated all the way up to
the top-level of the user design, as follows:

• Bits 7 to 0 of the “ppdata” input must be connected to the FPGA pins that correspond to pins
D7 to D0 respectively of the parallel port connector on the XSV board.

• Bits 6 to 3 of the “ppstatus” output must be connected to the FPGA pins that correspond to pins
S6 to S3 respectively of the parallel port connector on the XSV board.

For an explanation of how to ensure that the correct connections are made from the FPGA, through the
CPLD, to the parallel port connector, see section 5.0, “CPLD requirements for the PC-to-SRAM
interface”.

6

6.3 Converting a design to use “sraminterfacewithpport” instead
of “sraminterface”
Any user design that uses the “sraminterface” module to provide access to a bank of SRAM can be easily
modified to use instead the “sraminterfacewithpport” module. Making this modification will allow the
user design normal access to an SRAM bank, while also allowing a PC to access the same SRAM bank.

The following changes need to be made to an existing user design to change from the “sraminterface”
module to the “sraminterfacewithpport” module:

• Add the extra necessary files to your design, as listed in section 4.0 “Files needed for the
VHDL module”.

• Change all declarations of an “sraminterface” component to declarations of an
“sraminterfacewithpport” component. Make the same name changes to the corresponding
component instantiations.

• Add the “ppdata” and “ppstatus” signals to the port listings of the above component
declarations. Add the signals to the port mappings of the corresponding component
instantiations.

• Add the “ppdata” and “ppstatus” signals to the ports of the user design’s top-level entity.
• Add pin constraints to the design’s UCF ensuring that the “ppdata” and “ppstatus” signals are

connected to the correct FPGA pins, as listed in the table in section 5.0, “CPLD requirements
for the PC-to-SRAM interface”.

7.0 Communication protocol overview

This section provides an overview (from a PC programme’s perspective) of the protocol used by the PC-to-
SRAM interface. The information in this section and section 8.0 can be used to write a PC utility programme
that communicates with the PC-to-SRAM interface to access the SRAM on the XSV board. (Note that a Visual
Basic programme that does this, “XSVSRAMUtility.exe” is included with this resource collection. See the
document called “XSV SRAM PC Utility”, which describes the programme).

The PC-to-SRAM interface gives complete access to one bank of SRAM. The address and data size details are
therefore as follows:

No. of addressable locations: 512 * 1024 = 524 288 = 512K
(Addresses are 19 bits wide).

Width of data at each location: 16 bits (2 bytes)
Total capacity of one SRAM bank: 512K * 2 = 1024 KB = 1MB

7.1 Operations
The PC-to-SRAM interface allows a PC programme to carry out the following operations:

• Set Address
• Write
• Read
• Apply Settings

Set Address operation
This operation tells the PC-to-SRAM interface the address at which the next write or read will take place.
The PC-to-SRAM stores a value for the “current” address. When the PC requests a write or a read, the

7

write or read is made at the location indicated by the “current” address. This operation is therefore used to
set the current address.

The address is sent to the PC-to-SRAM interface in four pieces – known as slices. The first three slices
sent are 5 bits wide and the final slice is 4 bits wide – for a total of 19 bits.

Additionally, after every write or read operation, the current address is incremented by 1. This means that
writes or reads from consecutive locations only require the “set address” operation to be carried out at the
start of the block.

Write operation
This operation tells the PC-to-SRAM interface to write a 16-bit value to the current address. The data to
be written is sent in four slices. Each slice is 4-bits wide, for a total of 16 bits of data.

After the write occurs, the current address is incremented by 1.

Read operation
This operation tells the PC-to-SRAM interface to read a 16-bit value from the current address. The data
read is sent from the PC-to-SRAM interface to the PC in four slices. Each slice is 4-bits wide, for a total
of 16-bits of data.

After the read occurs, the current address is incremented by 1.

Apply Settings operation
The PC-to-SRAM interface has a useful “settings” feature. The interface is capable of storing several
flags (also called settings) internally, whose value can be set by the PC to be either 0 or 1. The idea is that
these flags affect the behaviour of the PC-to-SRAM interface in some way. In this manner, the PC can
dynamically control aspects of the PC-to-SRAM interface’s behaviour. The communication protocol
currently allows for up to 5 of these flags.

Currently, only one such flag is implemented. This flag is called the “PC Control-Enabled” flag (or
setting). The value of this flag makes no difference to the stand-alone version of the PC-to-SRAM
interface, but it has an important effect on the VHDL module version of the interface, as explained in the
following:

When PC Control-Enabled is set to 1, the PC has exclusive access to the XSV SRAM via the
PC-to-SRAM interface module. If the user design (in which the module is embedded) tries to
access the SRAM at this time, its read and write requests will be ignored.

When PC Control-Enabled is set to 0, the user design has exclusive access to the XSV SRAM
via the PC-to-SRAM interface module. If the PC tries to access the SRAM at this time, the write
and read operations will not be successfully carried out.

The “apply settings” operation is used to update the value of the flags. Currently the only flag that exists
(and can therefore be updated) is the PC Control-Enabled flag.

7.2 Signals used
The PC-to-SRAM interface uses 8 signal lines from the PC to the XSV board, and 4 signal lines from the
XSV board to the PC.

The names given to these signals and their pins on the parallel port connectors are listed below. In reading
the table, note the following:

8

• A signal Dx (where x is a number) is a data pin on the parallel port connectors.
• A signal Sx (where x is a number) is a status pin on the parallel port connectors.
• The notation signalname(x:y) is used to indicate a bus named “signalname”, with a most

significant bit number of x and a least significant bit number of y.
• The notation signalname(z) is used to indicate bit number z of a bus named “signalname”.
• The notation Dx:Dy or Sx:Sy (where x and y are numbers) is used to indicate a range of data or

status pins on the parallel port connectors.

Signal name: Parallel port pin: Description:
NextSlice D7 Transitions in the value of NextSlice are used to indicate when the

next slice of an address or data is being transmitted. NextSlice is
also used for the “apply settings” operation.

Read D6 Setting Read = 1 (with Write = 0) instructs the PC-to-SRAM
interface to perform the read operation. Setting Read = 1 and
Write = 1 instructs the PC-to-SRAM interface to perform the “set
address” operation.

Write D5 Setting Write = 1 (with Read = 0) instructs the PC-to-SRAM
interface to perform the write operation. Setting Write = 1 and
Read = 1 instructs the PC-to-SRAM interface to perform the “set
address” operation.

DataIn(4:0) D4:D0 These 5 signals from the PC to the PC-to-SRAM interface are
used to transmit each slice of an address or each slice of data to be
written.

DataOut(3:0) S6:S3 These 4 signals from the PC-to-SRAM interface to the PC are
used to transmit each slice of data that has been read.

8.0 Communication protocol details

This section describes the actions that a PC programme should take in order to carry out the four operations the
PC-to-SRAM interface can handle, namely: set address, write, read, and apply settings.

All of the operations require the PC programme to write to the data register of the parallel port and read from
the status register of the parallel port. Note the following about the parallel port of a PC:

• The data register’s I/O address is the same as the Base Address of the parallel port.
• The status register’s I/O address is equal to (Base Address of parallel port + 1).
• The notation Dx (where x is a number) refers to bit number x of the parallel port data register. It also

refers to the pin on the parallel port connector on the PC connected to this bit of the data register.
• The notation Sx (where x is a number) refers to bit number x of the parallel port status register. It also

refers to the pin on the parallel port connector on the PC connected to this bit of the status register.

Note: The XSV board contains optional inverters on lines D0 and D1 of the parallel port. Jumpers J29
and J30 control whether or not the values on lines D0 and D1 respectively are inverted before reaching
the FPGA.

For simplicity, the values in the tables in this section have been specified assuming these inverters are
NOT in the signal path. However, most of the time these inverters WILL be in the signal path on the
XSV board.

When these inverters are in the signal path, the PC programme must write (to lines D0 and D1 of the
data register) the INVERSE of the bits listed in the tables in this section. This only applies to D0 and D1
of the data register. It does not apply to any other bits/pins/lines.

9

Carrying out each of the operations listed below involves writing to the parallel port data register and reading
from the parallel port status register. In the tables below, note the following:

• When writing to the data register, the tables indicate what values are to be written which bits of the
data register.

• When reading from the status register, the tables indicate which data will appear on which bits of the
status register. (In other words, the tables show which data the PC-to-SRAM interface writes to
which bits of the status register).

8.1 Initialising the PC-to-SRAM interface
To initialise the PC-to-SRAM interface, a PC programme should carry out the actions in the following
table. Initialising the PC-to-SRAM interface ensures that the interface is ready to commence receiving
instructions.

Data Register Bits Status
Register Bits

Action taken by
PC:

D7
[NextSlice]

D6
[Read]

D5
[Write]

D4
[DataIn(4)]

D3:D0
[DataIn(3:0)]

S6:S3
[DataOut(3:0)]

Write to data reg: 0 0 0 0 0 -

8.2 Performing the set address operation
To set the current address being stored by the PC-to-SRAM interface, a PC programme should carry out
the actions in the following table.

The address that is being set is referred to as “address” in the table.

Data Register Bits Status
Register Bits

Action taken by
PC:

D7
[NextSlice]

D6
[Read]

D5
[Write]

D4
[DataIn(4)]

D3:D0
[DataIn(3:0)]

S6:S3
[DataOut(3:0)]

Write to data reg: 1 1 1 address(4) address(3:0) -
Write to data reg: 0 1 1 address(9) address(8:5) -
Write to data reg: 1 1 1 address(14) address(13:10) -
Write to data reg: 0 0 0 0 address(18:15) -

8.3 Performing the write operation
To perform a write to SRAM, a PC programme should carry out the actions in the following table.

The data value that is to be written is referred to as “write_data” in the table.

Data Register Bits Status

Register Bits
Action taken by
PC:

D7
[NextSlice]

D6
[Read]

D5
[Write]

D4
[DataIn(4)]

D3:D0
[DataIn(3:0)]

S6:S3
[DataOut(3:0)]

Write to data reg: 1 0 1 0 write_data(3:0) -
Write to data reg: 0 0 1 0 write_data(7:4) -
Write to data reg: 1 0 1 0 write_data (11:8) -
Write to data reg: 0 0 0 0 write_data (15:12) -

10

8.4 Performing the read operation
To perform a read from SRAM, a PC programme should carry out the actions in the following table.

The data value that will be read is referred to as “read_data”” in the table.

Data Register Bits Status Register

Bits
Action taken by
PC:

D7
[NextSlice]

D6
[Read]

D5
[Write]

D4
[DataIn(4)]

D3:D0
[DataIn(3:0)]

S6:S3
[DataOut(3:0)]

Write to data reg: 1 1 0 0 0 -
Read status reg: - - - - - read_data(3:0)
Write to data reg: 0 1 0 0 0
Read status reg: - - - - - read_data(7:4)
Write to data reg: 1 1 0 0 0 -
Read status reg: - - - - - read_data(11:8)
Write to data reg: 0 0 0 0 0 -
Read status reg: - - - - - read_data(15:12)

8.5 Performing the apply settings operation
To apply settings to the PC-to-SRAM interface, a PC programme should carry out the following actions.

Data Register Bits Status

Register Bits
Action taken by
PC:

D7
[NextSlice]

D6
[Read]

D5
[Write]

D4
[DataIn(4)]

D3:D0
[DataIn(3:0)]

S6:S3
[DataOut(3:0)]

Write to data reg: 1 0 0 0 0 -
Write to data reg: 0 0 0 0 0 -
Write to data reg: 0 0 1 0 0 -
Write to data reg: 0 0 0 0* Set D3:D1 to

0*. Place value
of PC Control-
Enabled flag on

D0.

-

* If in future designs more flags were added to the PC-to-SRAM interface, the values to set these flags to would
be written to D4:D1 at this point, along with the value for PC Control-Enabled on D0.

Remember, if the inverters on the XSV board are in the signal path on lines D0 and D1, the PC programme
must write to bits D0 and D1 the inverse of the value desired.

	1.0 About this design
	2.0 The stand-alone design vs. the VHDL module
	2.1 The stand-alone PC-to-SRAM interface
	2.2 The PC-to-SRAM interface VHDL module

	3.0 Files needed for the stand-alone design
	3.1 List of Files
	3.2 File Descriptions
	pctoleftsramtoplevel-sv02.vhd
	pctosraminterface-sv06.vhd
	sram512kleft16bit50mhzreadreq-sv05.vhd

	4.0 Files needed for the VHDL module
	4.1 List of Files
	4.2 File Descriptions
	sraminterfacewithpport-sv01.vhd
	sram512kleft16bit50mhzreadreq-sv05.vhd
	memorymultiplexor-sv01.vhd
	pctosraminterface-sv06.vhd

	5.0 CPLD requirements for the PC-to-SRAM interface
	6.0 Using the PC-to-SRAM interface module in a user design
	6.1 Module ports
	6.2 Requirements for using the module
	6.3 Converting a design to use “sraminterfacewithpport” instead of “sraminterface”

	7.0 Communication protocol overview
	7.1 Operations
	Set Address operation
	Write operation
	Read operation
	Apply Settings operation

	7.2 Signals used

	8.0 Communication protocol details
	8.1 Initialising the PC-to-SRAM interface
	8.2 Performing the set address operation
	8.3 Performing the write operation
	8.4 Performing the read operation
	8.5 Performing the apply settings operation

