DFFs are most common

- Most programmable logic families only have DFFs
- DFF is fastest, simplest (fewest transistors) of FFs
- Other FF types (T, JK) can be built from DFFs
- We will use DFFs almost exclusively in this class
 - Will always use edge-triggered state elements (FFs), not level sensitive elements (latches).

Synchronous vs Asynchronous Inputs

Synchronous input: Output will change after active clock edge
Asynchronous input: Output changes independent of clock

Flip-Flops often have async set, reset control.
D input is synchronous with respect to Clk

S, R are asynchronous. Q output affected by S, R independent of C. Async inputs are dominant over Clk. S,R inputs often called Pre (preset) and Clr (clear) inputs.

DFF with async control

C
D input
Q (FF)
R
S
Flip-Flop, Latch Timing

- **Propagation Delay**
 - C2Q: Q will change some propagation delay after change in C. Value of Q is based on D input for DFF.
 - S2Q, R2Q: Q will change some propagation delay after change on S input, R input
 - Note that there is NO propagation delay D2Q for DFF!
 - D is a Synchronous INPUT, no prop delay value for synchronous inputs

Clock to Q Propagation Delay

There is NO delay from D to Q!!! The clock input is what triggers the change, not the D input!!!

S, R to Q Propagation Delay

Setup, Hold Times

- Synchronous inputs (e.g., D) have Setup, Hold time specification with respect to the CLOCK input.
- Setup Time: the amount of time the synchronous input (D) must be stable before the active edge of clock.
- Hold Time: the amount of time the synchronous input (D) must be stable after the active edge of clock.

If changes on D input violate either setup or hold time, then correct FF operation is not guaranteed. Setup/Hold measured around active clock edge.