1. (9 pts) Convert the decimal value below to its 8-bit representation in each of the following encoding schemes. Write your answers in either HEX (base 16) or binary.

<table>
<thead>
<tr>
<th>Number</th>
<th>Signed Magnitude</th>
<th>1's Complement</th>
<th>2's Complement</th>
</tr>
</thead>
<tbody>
<tr>
<td>-29</td>
<td>1D (16 + 13)</td>
<td>E2 = 11100010</td>
<td>E3 = 11100011</td>
</tr>
</tbody>
</table>

2. (5 pts) Repetitively apply De'Morgan's theorem to the equation until only single variables are complemented (the not operator is applied only to single variables).

\[
((A' + B'C) D)' = (A' + B'C')' + D'
\]

\[
= A (B'C')' + D'
\]

\[
= A(B+C')' + D'
\]

\[
= AB + AC' + D'
\]

3. (5 pts) Simplify the following equation to a minimal expression:

\[
AB + ABC + B \quad B (A + AC + 1) \quad B
\]

4. (5 pts) Use one or more gates below such that Y is a LOW voltage when either button A or button B is pressed. Be sure to give gate numbers such as 7400, 7432, 7402, 7408, 7404 etc.

Solution #1

- Convert B to low true
- A
- 7404
- Y
- 7408

Solution #2

- A
- 7404
- B
- Y
- 7402

Convert A to high true
5. (5 pts) Complete the timing diagram below for A' and Y assuming that all gate delays = 1 ns.

6. (5 pts) Write the following function in SOP form using the minterms indicated. Do NOT minimize.

 \[F(A, B, C) = \sum m(1, 4, 6) = A'B'C + AB'C' + ABC' \]

7. (5 pts) Write the following function in POS form using the maxterms indicated. Do NOT minimize.

 \[F(A, B, C) = \prod M(1, 4, 6) = (A+B+C')(A'+B+C)(A'+B'+C) \]

8. (5 pts) Write the MAXTERM POS form that represents the following truth table for \(F(A, B, C) \)

\[
\begin{array}{ccc|c}
A & B & C & F \\
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 \\
0 & 1 & 1 & 1 \\
1 & 0 & 0 & 0 \\
1 & 0 & 1 & 1 \\
1 & 1 & 0 & 0 \\
1 & 1 & 1 & 1 \\
\end{array}
\]

\[\prod M(0, 4, 6) \\
(A+B+C)(A'+B+C)(A'+B'+C) \]
9. (5 pts) What is the voltage value (L or H) of output Y when \(A = L, B = H, C = H \). To get credit for this problem, you MUST show which transistors are open or closed and the path from Y to either Vdd or Gnd.

10. (5 pts) Fill in the truth table for the following function: \(F(A,B,C) = (A+B)'C \)

\[
F = (A+B)'C = A'B'C
\]

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
11. (6 pts) Using the following gates: 7432, 7400, 7408, 7402, 7404 give three combinations that are 'complete' logic families. Your three combinations of complete families cannot overlap.

Family #1: ______7400 (NAND gates are complete)__________

Family #2: ______7402 (NOR gates are complete)__________

Family #3: ______7408, 7404 OR 7432, 7404__________

12. (8 pts) PROVE or DISPROVE the following Boolean theorem. You can either use truth tables or algebraic manipulation. You MUST show your work.

\[
(A \text{xor } B) \text{C} = (AC) \text{xor } (BC)
\]

\[
(AB' + A'B) C = (AC) (BC)' + (AC)' (BC)
\]

\[
AB'C + A'BC = AC(B'+C') + (A'+C')BC
= AB'C + ACC' + A'BC + BCC'
= AB'C + 0 + A'BC + 0
= AB'C + A'BC
\]

PROVED.

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>((A \text{xor } B) \text{C})</th>
<th>((AC) \text{xor } (BC))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
13. (12 pts) Use one of the following terms to fill in the blanks below (you can also use numbers such as '1', '2', '3', etc).

CMOS DIE WAFER PMOS NMOS TTL TPHL TPLH
POWER FREQUENCY ASCII XOR NAND NOR PACKAGES
HIGH LOW ASCII

a. ____CMOS______ gates consist of PMOS and NMOS transistors.

b. The ____TPLH_________ delay is the time delay between a low to high voltage change on the output
 and a change on an input.

c. A CMOS 2-input NAND gate has _____4_____ transistors.

d. A _____WAFER______ is cut up into small squares call 'die', and each die is placed in a package - the
 package is normally what people refer to as a 'chip'.

e. It would take _____5______ binary digits to encode 17 distinct items.

f. The _____ASCII___________ code is a common method for encoding alphanumeric data.

14. (5 pts) Fill in the blanks in the following binary sequence if the sequence represents a GREY code
 (each code in the sequence is Boolean adjacent)
15. (5pts) What is the sum of the following 8-bit Hex numbers?

\[
\begin{align*}
\$7E & \quad + \quad \$42 & = \quad ____\$ C0______ \\
\end{align*}
\]
16. (10 pts) I would like to implement an 8-input AND gate ($F = A B C D E F G H$) but I only have gates with 4 or fewer inputs. The gate types you have available are NAND, NOR, AND, OR, NOT.

Draw TWO different gate networks that implement this function. The gate types used in the two networks MUST BE DIFFERENT (i.e. if you use both NANDs and NORs in one network, they cannot be used in the other network).

And gates

NAND gates + NOR gate