1. (5 pts) Identify the following device. What values do the inputs have to be for the outputs to have the following values $Y_0 = 0$, $Y_1 = 0$, $Y_2 = 1$, $Y_3 = 0$.

![2 to 4 Decoder with Enable](image)

2 to 4 Decoder with Enable

$Need\ S1 = 1, S0 = 0, \ EN = 1.$

2. (8 pts) Assume that the initial state device shown below is a '0'. Draw a timing diagram that will cause the state of the device to be changed to '1'.

![SR latch with low true inputs](image)

SR latch with low true inputs

3. (8 pts) Complete the timing diagram below for the Q output of the device that is shown.

![Rising edge triggered DFF](image)

Rising edge triggered DFF

4. (8 pts) Complete the timing diagram below for the Q output of the device that is shown.
5. (8 pts) Complete the timing diagram below for the Q output of the device that is shown.

C
J
K
Q

Falling edge triggered JK.

6. For a flip-flop of your choosing (D, J-K, T), draw a timing diagram and illustrate setup and hold time constraints. SEE NOTES ON SETUP/HOLD for DFF.

7. (5 pts) What is the clock period of a 50 MHz clock (1 MHz = 10^6)?

$$\text{Period} = \frac{1}{\text{Frequency}} = \frac{1}{50 \times 10^6} = 0.02 \times 10^{-6} = 20 \times 10^{-9} = 20 \text{ ns}$$

8. (5 pts) What is the value of $A3$ shifted to the right by one position with the serial input bit = ‘1’?

$$A3 = 1\ 0\ 1\ 0\ 0\ 0\ 1\ 1$$

Right Shifted value: $1\ 1\ 0\ 1\ 0\ 0\ 0\ 1 = SD1$

9. (5 pts) How is an asynchronous input different from a synchronous input?

Asynchronous inputs are independent of clock, synchronous inputs effect circuit only on active clock edge.

10. Draw the schematic for a 1-bit register. The inputs are CLK, D, LD. The output is Q. The LD input is high true. SEE NOTES.

11. Draw the diagram of a rising edge triggered D-FF using D Latches. SEE NOTES (the inverted clock goes to the FIRST D latch, the master latch).

12. (10 pts) Draw a schematic for a 3-bit counter…. etc. SEE NOTES.

13. (10 pts) Draw the schematic of a 4-1 mux using Tri-state buffers. You can use an decoder block in your design, and you do not have to show the internal details of the decoder. SEE NOTES.