1. **Show a schedule for a minimum resource implementation**

Some entries may not be filled out!!! Values ‘b1’, ‘a0’ are already present in registers.

<table>
<thead>
<tr>
<th>Clk</th>
<th>Mult A</th>
<th>Add A</th>
<th>Register transfer ops</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>N2</td>
<td>R1 ← X@1 (R2)*b1</td>
<td>N1 R2 ← X</td>
</tr>
<tr>
<td>2</td>
<td>N3</td>
<td>R3 ← X (R2)*a0</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>N4</td>
<td>Y = R1 +R3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

How many multipliers? ____________________
How many adders? ____________________
How many registers? ____________________

Notes:
Assume R2 initially has X@1 value.
2. Draw a Datapath with registers for minimum resource implementation.

Has old X which is X@1 in first clock cycle, overwritten by new X because no longer need X@1 after first clock.
3. **ASM Chart Specification**

Draw an ASM Chart for your datapath. Your initial state should be a loop which waits for a START signal. After start is received, perform computations until a start signal is received. The number of clocks to perform a computation should match your minimum resource schedule. Assume that the external system provides new input on the first clock cycle of your computation loop without the need for external handshaking.

Assert a ORDY line for one clock each time a result is ready from your datapath.

![ASM Chart Diagram]

- **Start?**
 - **S0**
 - **Ld_r2**
 - **Mux_sel=b1**
 - **Ld_r1**
 - **S1**
 - **Ld_r3**
 - **Mux_sel=a0**
 - **S2**
 - **ORDY**
 - **S3**
 - **Stop?**
 - **S0**
 - **S1**
 - **S2**
 - **S3**
4. VHDL Entity for ASM Chart

Write the VHDL entity for the FSM required for your design (do not write the architecture, I assume that you can do this).

entity myfsm is
 port (
 clk, aclr: in std_logic;
 start, stop: in std_logic;
 ld_r1, ld_r2, ld_3: out std_logic;
 mux_sel: out std_logic;
 ordy : out std_logic
);
end myfsm;