Programmable System-on-a-Chip (PSoC)

- CPU core + programmable logic
- PSoCs becoming more important because NRE (non-recoverable engineering) costs keep rising as we go deeper into sub-micron and nanometer technologies
 - NRE cost is the cost of the first chip
 - A mask set is used to pattern layers/materials (metal, polysilicon, diffusion, etc) on wafer
 - Masks are becoming increasingly expensive
 - The higher the NRE, the more chips you have to sell to recover costs
- A programmable chip can be used in more applications, so more potential customers!!!

Xilinx Pro FPGA

Has PowerPC CPU cores, Xilinx VirtexII programmable logic
RocketIO supports high-speed serial IO such as 10Gb ethernet

Supported Standards via RocketIO

<table>
<thead>
<tr>
<th>Protocol</th>
<th>Channels (Layers)</th>
<th>IO Band Rate (Gbps)</th>
<th>Reference Clock Rate (MHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fibre Channel</td>
<td>1</td>
<td>2.12</td>
<td>106</td>
</tr>
<tr>
<td>Gigabit Ethernet</td>
<td>1</td>
<td>3.125</td>
<td>150.75</td>
</tr>
<tr>
<td>100Gbit Ethernet</td>
<td>4</td>
<td>3.125</td>
<td>156.25</td>
</tr>
<tr>
<td>Infiniband</td>
<td>1, 4, 12</td>
<td>2.5</td>
<td>125</td>
</tr>
<tr>
<td>Aurora</td>
<td>1, 2, 3, 4, ...</td>
<td>0.840 – 3.125</td>
<td>42.06 – 156.25</td>
</tr>
<tr>
<td>Custom Protocol</td>
<td>1, 2, 3, 4, ...</td>
<td>up to 3.125</td>
<td>up to 156.25</td>
</tr>
</tbody>
</table>

These are all Serial IO standards

Coding for Serial Data Transmission

- Want to distinguish start/end of packets
- Want a certain number of signal transitions per unit time (transition density) so that receiver clock can remain synchronized to bit stream
- Want to be able to detect transmission errors.

8B/10B Coding

- 8B/10B coding means that 10 bits are used to encode 256 (8-bit) data characters.
 - 10 bits give 1024 combinations, why the extra bits?
- Data sent in packets that is formatted as header (start of packet), packet data, end of packet
 - Need special control characters (K-characters) that will be used for start/end of packet designation, sync character, other control
 - Extra bits used to encode K-characters (12 in 8B/10B code)
 - Data is called D-characters
 - A subset (called commas) of the K-characters has bit encoding which is guaranteed to NEVER appear in the serialized stream of D-characters.
8B/10B Coding (cont)
- Code is run length limited (RLL) – guarantees no more than five consecutive ‘1’s or five consecutive ‘0’s
 - Guaranteed transition density (transitions per unit time).
 - Allows receiver clock PLL to remain synchronized to input data stream
- Disparity – difference in number of received ‘1’s and ‘0’s in a serial stream over some length.
 - +1 disparity (one more ‘1’ than ‘0’)
 - -1 disparity (one more ‘0’ than ‘1’)
- Code is DC-balanced if equal numbers of ‘1’s and ‘0’s is sent.

LVDS
- LVDS – low voltage, differential signaling
 - Two lines: D+, D-
 - Signal swing is 300 mV, typically about 1.25V
 - CL

Disparity/DC-balance, and LVDS
- If a code has low disparity (low difference in number of ‘0’s, ‘1’s sent) then charge does not get chance to build up.
- For a given period of time, if equal numbers of ‘1’s, ‘0’s is sent, this is 0 disparity. This transmission is said to be ‘DC-balanced’.
- Each 10-bit symbols in the 8B/10B code either has a disparity of 0, +2 (six ones, four zeros), or -2 (four ones, six zeros)
- Running Disparity is the disparity for a given sequence of symbols, e.g. a packet
- Disparity for a in a 10G ethernet packet is guaranteed to be either +1 or -1.

Error Detection
- CRC (Cyclic Redundancy Check) – much more complicated than a XOR checksum, much more robust in detecting errors
 - 32-bit CRC supported in RocketIO logic
- Running disparity can also be used to detect an error.

RocketIO Physical Interface

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>VCCD</td>
<td>0.9</td>
<td></td>
<td>2.5</td>
<td>V</td>
<td>Output differential voltage for program mode.</td>
</tr>
<tr>
<td>IC</td>
<td>130</td>
<td></td>
<td></td>
<td>pA</td>
<td>Output differential current (IOUT)</td>
</tr>
<tr>
<td>VIO</td>
<td>0.5</td>
<td></td>
<td>1.5</td>
<td>V</td>
<td>Output voltage swing of input signal.</td>
</tr>
<tr>
<td>VCM</td>
<td></td>
<td></td>
<td></td>
<td>pV</td>
<td>Common mode output voltage range.</td>
</tr>
<tr>
<td>VCM0</td>
<td></td>
<td></td>
<td></td>
<td>pV</td>
<td>Differential output voltage.</td>
</tr>
</tbody>
</table>

This is not LVDS standard as minimum differential is 800 mV.

Eye Diagram
- An EYE diagram used to measure quality of transmission channel.
- Generate pseudo-random data over channel, feed received data into vertical channel of scope.
- Feed data rate (received generated clock) into horizontal sweep.
- An ‘open’ eye corresponds to minimal distortion.
- A closed eye shows signal jitter.
 - Jitter is short term variations of a signal from its ideal position in time.
 - Jitter caused by intersymbol interference, power supply noise, transmission channel loss, etc.
Connecting High Speed Serial Links

- DC coupling – possible if same common voltages used.
- Used if incompatible common-mode voltages or optical link is used. For AC coupling, DC-balance is very important because can’t transmit signal with DC-content.

PowerPC 405-D Core

- Thirty-two 32-bit registers
- Load/Store instruction set
 - Multiply accumulate
 - Three timers
 - 64-bit time base for timers
- 16KB Icache, 16KB Dcache
- 5-stage pipeline (average of about 1 clock per instruction)
- Memory Management Unit (MMU) so can execute virtual memory Operating System (OS).
- No hardware floating point
- Operation at 300+ MHz
Access to Memory Outside of Caches

- OCM – on chip memory controller
- BRAM – block RAM in FPGA logic.

Virtext-II FPGA Resources

- 18x18 2’s-complement multiplier
- 18Kb Dual Port SRAM blocks that can be configured as shown below

<table>
<thead>
<tr>
<th>Type</th>
<th>Configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>16K x 1 bit</td>
<td>2K x 9 bits</td>
</tr>
<tr>
<td>4K x 1 bits</td>
<td>1K x 18 bits</td>
</tr>
<tr>
<td>4K x 4 bits</td>
<td>512 x 36 bits</td>
</tr>
</tbody>
</table>

Cypress Microsystems PSOC

- Programmable System on a Chip
- 8-bit Microcontroller (CPU clock up to 24 MHz)
- Programmable logic that supports both digital and analog logic
- Programmable Digital Blocks
 - Pulse width modulators
 - Timers/Counters
 - UARTs/SPI blocks
- Programmable Analog Blocks
 - A/D conversion
 - Analog computer
 - Temperature sensor
 - Analog Modulator
 - Sinewave waveform Generation

Sample Blocks

Wide range of building blocks available as library elements from within design tool supplied by Cypress.

CPU

- 8-bit CPU, close to a 6502 core (same core used in the Apple II and original Nintendo)
- 8-bit Accumulator (A), 8-bit Index Register (X), 16-bit Program counter, 8-bit flag register, 8-bit stack pointer register
 - 6502 also had another index register (Y) that is missing in this core.
- Two register banks of 256 locations each
 - Used for RAM, also for control registers of onboard peripherals
- Non-pipelined core, all operations take at least 5 clocks, most 6 or 7 clocks, some take up to 13 clocks
Programmable System-on-a-Chip

- The Xilinx-II Pro and Cypress PSOC are two examples are programmable system-on-a-chip
- Processor core + programmable Logic is a powerful combination.
- Xilinx device intended for high-end, high-performance applications
- Cypress device for low-end, low-cost.