Simulation and Modeling for Signal Integrity and EMC

Lynne Green
Sr. Member of Consulting Staff
Cadence Design Systems, Inc.
320 120th Ave NE
Bellevue, WA 98005 USA
(425) 990-1288
http://www.cadence.com
Outline

• Why Simulation?
 —Examples
• Simulation and signal integrity
• General-purpose analog simulators
• Transmission-line simulators
• Modeling for simulation
• Model standards
• Creating accurate models
• Simulation and signal integrity revisited
• Summary
Why Simulation?

- Example: Ringing and EMI (far field) on one trace
- Round-trip time, ringing, and EMC
- Solving SI problems can reduce EMC problems

Simulate to validate design (ideal world).
Why Simulation?

- Example: Ringing and EMI (far field) on one trace
- Edge rate, ringing and EMC
- Solving SI problems can reduce EMC problems

Simulate to find (and solve) problems (real world).
Why Simulation?

- Example: Crosstalk (near-field coupling) between traces
- Prevent forward and backward crosstalk
- Changing stackup can minimize crosstalk
- Moving traces to another routing layer can minimize problems related to crosstalk

Simulate to compare tradeoffs during product design.
Why Simulation?

Simulation = Virtual Prototyping

• Simulation allows one to prototype hardware using software (optimize terminations, correcting net list errors, …)

• *Plus*
 Analyze changes in stackup assignment/dimensions, run best/worst-case timing analysis, add/move vias, add/move/remove test points, add/move decoupling caps, …)
Why Simulation?

- Shorter and more predictable design cycles
- Fewer prototype turns
- Lower development cost means lower product cost
- Faster time to market
Simulation and Signal Integrity

Pre-Layout Analysis:

- SI and EMC design specifications
- Good constraints up front makes layout faster
- Better initial placement, less ripup/reroute
- Simulate to develop rules of thumb
- Validate existing rules of thumb
- Generate constraint values for routers
Simulation and Signal Integrity

Post-Layout Analysis:

• Problem solving on actual routed designs
• Identify “risk” to focus design efforts
• Optimize termination methodology
• Optimize I/O drivers
 (strength and slew rate options)
Simulation and Signal Integrity

Modeling solid planes
- Ideal plane approximation
- Cutouts, vias, and other complications
- Impacts simulation for some frequencies

General analog simulator
- Ground is a universal node for simulation analysis

SI/EMC
- “Layout ground” is a solid plane
- Layout ground is a REFERENCE VOLTAGE POINT
Simulation and Signal Integrity

Choosing the right type of simulator

- General purpose
- Transmission line
- Behavioral
- Combined simulation capability

Choosing correct models

- SPICE-style transistor parameters
- IBIS
- IBIS-X
- VHDL/AMS and Verilog/AMS
General-Purpose Analog Simulators

“SPICE” simulators
- Berkeley SPICE 2G6
- Berkeley updates
- Commercial SPICE (such as HSPICE)

Other general-purpose analog simulators
- Analogy/Avanti Sabre (MAST modeling language)
- Other non-SPICE algorithms
General-Purpose Analog Simulators

Models
- SPICE 2G6 netlists for structural relationships
 - Examples: op amp subcircuits, I/O subcircuits
 - SPICE 2G6 parameter lists for device modeling
 - Proprietary models and modeling languages
 (e.g. BSIM3V3 enhancements)
Transmission-Line Simulators

Many vendors supporting the IBIS standard
- Transmission lines usually supported in general-purpose (SPICE) simulators

Different from general-purpose simulators
- Optimized for transmission-line analysis
- Uncoupled lines or many coupled lines
- Lines of various lengths (time stepping)
- Often faster than SPICE (10x or more)
Transmission-Line Simulators

Models

- Topology “netlists” for structural relationships
- IBIS models for I/O buffers
- Proprietary models and modeling languages
Other Types of Simulators

Digital timing/delay simulators
- Delay through integrated circuits or modules
- Delay for interconnects
- Best/worst case timing analysis
- Can handle multiple paths between two pins

Models
- Netlist for structural relationships
- Logical relationships for pins
- Lists of valid paths and test vectors
Modeling for Simulation

Time-domain models
- Current = f (node voltages)
- Current = f (charge, voltage, state variables)
- Functions can include integrals and derivatives

Frequency-domain models
- LaPlace formulation
- Example: transmission line

 $\frac{V_{out}}{V_{in}} = \exp(-\alpha L) \exp(-st)$
- Polynomial vs. exponential equations
Modeling for Simulation

Model formats

- Subcircuits: easy to create, runs slow
- Equations: hard to create, can run fast (slow if iterative)
- Tables: easy to create, runs very fast

Tradeoffs in modeling

- What format(s) are supported by the simulator?
- Ease of creation vs. run time?
- Can the model be reused (parameterized)?
- Can models be created from measurements?
Model Standards

SPICE 2G6
- Structural netlist format
- Accepted by general-purpose analog simulators
- Other SPICE netlists may not be portable

SPICE Models
- Model equations usually coded into simulator
- Implementation often proprietary
- Subcircuits are structural (lists of components)
Model Standards

Component Models
- Component model = equations + parameters
- Model equations may be proprietary
- Model parameters often proprietary (e.g. foundry)

A SPICE model can (and will) produce different results on different simulators.
Model Standards

IBIS

- ANSI/EIA 656 – portable across different vendors
- I/O Buffer Information Specification (drivers and receivers)
- No circuit information (I/V and V/t tables for pins)
- Topology netlists are simulator-specific
 (not part of the standard)
- IBIS 3.2: EBD (Electrical Board Description)
Model Standards

IBIS-X

- Extending IBIS models: macro-language
- Simulator control (trigger conditions)
- Data patterns and relative switching times
- Many other enhancements
Model Standards

VHDL and Verilog
- Digital and mixed-signal structural description
- Digital functional behavior

VHDL/AMS and Verilog/AMS
- Mixed-signal structural description
- Digital functional behavior (logic functions)
- Analog functional behavior (equations)
- Triggers/values pass between digital and analog sections
Simulator Tradeoffs

General Purpose Analog Simulators
+ Handles a variety of analog components
- May not handle IBIS or other digital components
- Slow for transmission lines

Transmission Line Simulators
+ Very fast for transmission lines
- May not handle SPICE models

Digital Delay/Timing Simulators
+ Very fast, handles many nets
- May not handle analog models
Modeling Tradeoffs

SPICE (and other analog models)
- Models coded into simulator
- Not a standard; not portable across vendor platforms
- Equations are “compiled” within the simulator

IBIS and IBIS-X
- ANSI/EIA standard; portable
- Thousands available on the web

VHDL/AMS & Verilog/AMS
- ANSI/EIA standard; portable
- Few models available for I/O buffers
Creating Accurate Models

The Silicon Foundry
- Runs device and process simulations
- Generates SPICE transistor models

I/O Designers
- Circuit simulation using foundry models
- Extract IBIS model tables from SPICE simulations

IBIS models can also be created from measurements
- An IBIS model is a set of V/I and V/t tables
- Need enough samples for min/max values
Creating Accurate Models

Remember:
Always validate models before you use them!
Simulation and Signal Integrity/EMC Revisited

Pre-layout and post-layout

- Predicting effects of electrical changes
- Predicting effect of layout changes
- Simulating for SI and EMC
 — Single nets, groups of nets, coupled nets
Simulation and Signal Integrity/EMC Revisited

Making the right choices

- Simulator
- Models
- Methodology

Validate methodology as well as models.
Summary

There are two ways to solve problems:

- Reactive (ignore it and maybe it will go away)
- Proactive (before it gets more expensive to fix)

Was it cost-effective?

- Did it reduce prototype turns?
- Did it reduce product cost?
- Did it save on time-to-market?
Did you avoid doing that design over

instead of

- or in addition to -

moving on to the next project?