Verilog Transistor Modeling

- Verilog has both unidirectional and bidirectional transistor models for switch-level CMOS modeling.
 - Unidirectional:
 - `nmos`, `pmos` are unidirectional (three terminals).
 - `cmos` is a pass transistor – an `nmos`, `pmos` connected back to back (four terminals).
 - Strength reduction versions are `rnmos`, `rpmos`, `rcmos`.
 - Bidirectional, non-strength reducing:
 - `tranif0`, `tranif1` are bidirectional (three terminals).
 - Strength reducing versions are `rtranif0`, `rtranif1`.

Y = A xor B

\[\begin{align*}
Y &= A \text{ xor } B \\
A &= B \\
B' &= Y
\end{align*} \]

\[\text{module xorgate}(Y, A, B) ; \]

```
input A, B;
output Y;
supply0 gnd;
supply1 vdd;

// Inverter for internal Bnot
pmos p3 (BNOT, vdd, B);

nmos n3 (BNOT, gnd, B);

pmos p1 (Y, B, A);
nmos n1 (Y, BNOT, A);

pmos p2 (Y, A, B);
nmos n2 (Y, A, BNOT);

endmodule
```

Ramcell

To read, R = 1, W = 0, DIN = X.
To write '0': R = 1, W = 1, DIN = 1.
To write '1': R = 1, W = 1, DIN = 0.

DOUT latches last read or written value.

\[\text{module ramcell}(dout, din, r, w) ; \]
```
input din, r, w;
output dout;
supply0 gnd;

not i3 (dinnot, din);
nmos tn1 (n5, gnd, dinnot);
nmos tn2 (n1, n5, w);
nmos tn3 (n6, gnd, din);

nmos tn4 (n4, n6, w);
nmos tn5 (n2, n1, r);
tranif1 tn6 (n4, n5, r);

not (pull0, pull1) i1(n3, n2);
not (pull0, pull1) i2(n2, n3);

not i4(dout, n4);
not (weak0, weak1) i5(n4, dout);

endmodule
```

Dynamic Gates

- Ntree

\[\text{Precharge Transistor} \]
\[\text{Logic Function (Pulldown network)} \]
\[\text{Evaluation Transistor} \]

Note: Cannot specify drive strength on transistors!
Operation of a Dynamic Gate

- **Precharge phase**: Clock LOW, Precharge transistor on, output pull high. Evaluation transistor off.

 ![Precharge Diagram]

- **Evaluation phase**: Clock HIGH, Precharge transistor off, Evaluation transistor on. Output is pulled low if there is a path in Ntree to ground.

 ![Evaluation Diagram]

Why must gate input only make a single low to high transition or remain high?

- **Equivalent to**: Dynamic gate equivalent to a static gate.

 ![Dynamic vs Static Diagram]

- **Input A makes a low to high transition, output charge already drained to ground when A went low to high.**

 ![Input Transition Diagram]

Domino AND2 gate

- **Module**:

```verilog
module dom_and2(y, a, b, clk);
  output y;
  input a, b, clk;
  supply0 gnd;
  supply1 vdd;
  trireg(medium) yn;
  pmos tp1 (yn, vdd, clk);
  nmos tn1 (n1, gnd, clk);
  nmos tn2 (n2, n1, a);
  nmos tn3 (yn, n2, b);
  not i0 (y, yn);
  endmodule
```

- **Simulation**: Drive strength of yn internal node is "me1" node yn gets pulled to ST0, so output is ST1.

Simulation of Domino AND2 gate
Simulation of Domino AND2 gate without trireg node

drive strength of yn internal node is now ‘HiZ’, which makes output a ‘StX’.

Simulation of illegal transition on A, B inputs

A, B go high, then drop low. Output goes to ‘1’ when both ‘A’, ‘B’ = 1, but then internal charge is drained so output remains at ‘1’ even when A, B return to ‘0’.

Subthreshold Leakage

• If the clock stays high for an extended period, the output charge will leak off due to subthreshold currents
• Dynamic circuits typically have a minimum clock frequency requirement because of this.
• Subthreshold leakage gets worse as you scale down in technology.
• A trireg net can have three delay values
 – (rise_delay, fall_delay, charge_decay_time)
 – charge_decay_time is time it takes for charge to decay to an ‘X’ value.

Domino Buffer with Charge Delay

module dom_buf(y, a, clk);
 output y;
 input a, clk;
 supply0 gnd;
 supply1 vdd;
 trireg(medium) #(0, 0, 40) yn;
 pmos tp1 (yn, vdd, clk);
 nmos tn1 (n1, gnd, clk);
 nmos tn2 (yn, n1, a);
 not i0 (y, yn);
endmodule

Simulation with Charge Delay

From 100 ns, Clk remains high.
After 40 ns, charge (Me1) decays to X value (MeX)
Output goes to StX