1. (10 pts) Write a single process that will function as a clock divide-by-2 function. You can use any approach that you desire (with or without a sensitivity list). The new clock signal should be called \textit{clkhalf}' and the input clock signal is called \textit{clk}. Use \texttt{std_logic} for the signal types and assume that the clock only has values of '1' and '0'. You CANNOT assume that the duty cycle is 50%.

```vhdl
signal clkhalf : std_logic := '0';
process (clk)
begin
  if (clk = '1') then clkhalf <= not (clkhalf);
end if;
end process;
```

2. Write a VHDL code segment that models the situation shown below. The signal declarations are as shown. When neither tri-state buffer is enabled, the \(Y \) value should be a weak '1' condition, and if both tri state buffers are enabled then \(Y \) should be a strong unknown.

```
Signal TA, A, TB, B, Y : std_logic;

-- use multiple driver approach
Y <= 'H';     -- pullup
Y <= A when (TA = '1') else 'Z';
Y <= B when (TB = '1') else 'Z';
```

When tristate control is ‘1’, then output follows input else high impedance output.
3. (15 pts) a. Draw the waveform generated by the following code:

SEE ATTACHED FIGURE ('a3' waveform)
architecture A of E
begin
 signal a: std_logic = 'Z';
 a <= transport 'H' after 3 ns;
 a <= transport 'L' after 5 ns;
 a <= transport '0' after 7 ns;
end E;

4. (10 pts) Draw the waveform generated by the following process for at least 20 ns. ('wait on' waits for an event on the specified signal).

SEE ATTACHED FIGURE ('a4' waveform)
signal A: std_logic:= '0';
process
begin
 A <= transport '1' after 5 ns;
 wait on A;
 A <= transport '0' after 5 ns;
 Wait on A;
End process;

5. (10 pts) Draw the waveform generated by the following process for at least 20 ns.

SEE ATTACHED FIGURE ('a5' waveform)
signal A: std_logic:= '0';
process
begin
 A <= transport '1' after 5 ns;
 wait on A;
 A <= transport '0' after 5 ns;
 Wait;
End process;
6. (10 pts) Draw the waveform generated by the following process for at least 20 ns.

SEE ATTACHED FIGURE ('a6' waveform)

```vhdl
signal A: std_logic := '0';
process
begin
    A <= transport '1' after 5 ns;
    wait on A;
    A <= transport '0' after 5 ns;
end process;
```

7. (10 pts) Draw the waveform generated by the following process for at least 20 ns.

SEE ATTACHED FIGURE ('a7' waveform)

```vhdl
signal A: std_logic := '0';
process
begin
    A <= transport '1' after 5 ns;
    wait for 2 ns;
    A <= transport '0' after 2 ns;
    Wait;
end process;
```

8. (15 pts) Draw the waveforms generated by the following VHDL code fragment for at least 20 ns.

SEE ATTACHED FIGURE ('a8', 'b8', 'c8' waveforms)

```vhdl
signal A, B, C: std_logic := '0';
A <= transport '1' after 4 ns, '0' after 6 ns;
B <= transport A after 3 ns;
C <= A after 3 ns;
```
9. (10 pts) In the process below, what is the value of 'cnt' at time = 25 ns? EXPLAIN your answer to get partial credit.

SEE ATTACHED FIGURE ('a9', 'b9') CNT = 4 because the process is triggered twice on assignments to A, B.

Signal A, B : std_logic := '0';

Process (A, B)
Variable cnt: = 0;
Variable ll :line;
Variable init :boolean

Begin
 If (init = FALSE) then
 Init := TRUE;
 Else
 Cnt := cnt + 1; -- do not increment CNT for initial triggering of process
 End if;
 A <= transport not(A) after 10 ns;
 B <= transport A;
End process;

10. Write a VHDL process that will generate a fixed number of clock cycles based upon a generic called 'CLKNUM'. The clock is a 50% duty cycle clock whose period is a generic called 'CLKPER'. The initial value of the clock signal should '0' and the clock signal name is 'clk'.

Signal clk: std_logic;

process
begin
 for i in 0 to CLKNUM-1 loop
 wait for CLKPER/2;
 clk <= not(clk);
 wait for CLKPER/2;
 clk <= not(clk);
 end loop;
 wait;
end process;
11. (10 pts) Assume that 'clk' is a 50% duty cycle clock with a 10 ns period.

 a. In the process below, what is the value of 'atime'?

```vhdl
Process (clk)
Variable atime: time;
Atime := clk'last_event;
End process;
```

 0 because process triggers on clk.

 b. In the process below, what is the value of 'atime'? 5 ns (trigger on each clk change)

```vhdl
Process (clk)
Variable atime: time;
Atime := clk'delayed'last_event;
End process;
```

12. (5 pts) Given a signal 'A', what would need to be in the sensitivity list of a process if I wanted the process to be triggered each time an ASSIGNMENT was made to 'A'?

 A'TRANSACTION

13. (5 pts) What is difference between std_logic and std_ulogic data types? When would I use one over the other?

 Std_logic is the resolved version of std_ulogic. You would use std_logic for signals that need multiple drivers, and either std_logic or std_ulogic if the signal only has one driver.